摘要:
A semiconductor device includes a semiconductor substrate; a sealing resin layer formed on a top face of the semiconductor substrate; a metal post formed on the top face of the semiconductor substrate such that a top face of the metal post is exposed through the sealing resin layer; a projecting electrode formed on the top face of the metal post; and a low-elasticity resin layer made of a resin material with an elasticity modulus lower than that of the sealing resin layer and formed on the top face of the sealing resin layer such that part of the low-elasticity resin layer lies between the projecting electrode and the sealing resin layer.
摘要:
A TFT and the like capable of realizing performances such as a low threshold voltage value, high carrier mobility and a low leak current easily. A TFT consists of a polycrystalline Si film having a small heat capacity part and a large heat capacity part, and the small heat capacity part is used at least as a channel part. The polycrystalline Si film is formed of a crystal grain film through laser annealing of an energy density with which the small heat capacity part melts completely but the large heat capacity part does not melt completely. Since the channel part is formed of large crystal grains grown from the boundaries between the small heat capacity part and the large heat capacity parts, it is possible to realize performances such as a low threshold voltage value, high carrier mobility and a low leak current by using a typical laser annealing device.
摘要:
[Problems] White laminates for print wire boards heretofore have problems of discoloring of thermosetting resin portion and reduction of reflectance. In LEDs of type using UV emitting device have not been appropriate in mounting recent high luminous intensity LED, a requirement for substrates which are not discolored towards UV and heat is becoming strong, since substrates on which the LED chip is mounted are deteriorated and discolored by UV. Further, in mounting chip LED, accuracy of board thickness is also required in order to avoid liquid leakage during sealing process of the chip LED.[Means for Solving the Problems] White prepreg according to the present invention is characterized in that it comprises a dried product of a resin composition (E) impregnated on a sheet glass fiber substrate; said composition (E) containing, as essential ingredients, an epoxy resin (A) comprising a cycloaliphatic epoxy resin (A1), a glycidyl (meth)acrylate polymer (B), a white pigment (C), and a curative (D). Besides, a white laminate of this invention is characterized in that it comprises a product obtainable by pressure molding under heating of one sheet or plural sheets of a white prepreg as above.
摘要:
A semiconductor device of the present invention includes a semiconductor chip; an internal pad for electrical connection formed on a surface of the semiconductor chip; a stress relaxation layer formed on the semiconductor chip and having an opening for exposing the internal pad; an under-bump layer formed so as to cover a face exposed in the opening on the internal pad, an inner face of the opening and a circumference of the opening on the stress relaxation layer; a solder terminal for electrical connection with outside formed on the under-bump layer; and a protective layer formed on the stress relaxation layer, encompassing a periphery of the under-bump layer and covering a side face of the under-bump layer.
摘要:
A LCD device is provided. On the input side, the collimated-light generator generates collimated light from incident light and then, the first polarizer plate of the first polarized-light controller generates first polarized light from the collimated light. The first quarter wavelength plate of the first polarized-light controller generates second polarized light from the first polarized light. The second polarized light thus generated passes through the liquid crystal layer to reach the output side. On the output side, the second polarized light passes through the second quarter wavelength plate of the second polarized-light controller and the second quarter wavelength plate thereof. Thus, the polarization state of the second polarized light is returned to its original one.
摘要:
A method of fabricating a thin film transistor includes the steps of (a) forming an amorphous silicon film containing hydrogen therein, on a substrate composed of resin, and (b) irradiating laser beams to the amorphous silicon film at an intensity equal to or smaller than a threshold intensity at which the amorphous silicon film is crystallized. For instance, the step (a) includes the steps of forming the amorphous silicon film on the resin substrate by sputtering, and doping hydrogen ions into the amorphous silicon film.
摘要:
A flat organic insulating layer is formed on a substrate provided with thin film transistors by coating and baking. Next, a pulse-shaped laser beam is irradiated on the organic insulating layer and a contact hole and an undulation are formed in and on the organic insulating layer by ablation. The undulation is formed in such a way as to have four or more height levels.
摘要:
An active matrix substrate includes a substrate composed of resin, and a polysilicon thin film diode formed on the substrate. The polysilicon thin film diode may be a lateral diode centrally having a region into which impurity is doped. As an alternative, the polysilicon thin film diode may be comprised of two lateral diodes electrically connected in parallel to each other and arranged in opposite directions.
摘要:
To provide a poly-Si film which has excellence in its characteristics themselves concerning transistor characteristics, such as the diffusion and precipitation of dopant, the interface and surface state or the carrier mobility, and excellence in controllability of those characteristics as well, a poly-Si film grown on an amorphous layer (12) comprises; a base layer (131) interfacing with the amorphous layer (12) and having a preferred orientation rate comparatively high; a low-energy layer (133) grown at an upper side of the base layer (131) and having a preferred orientation rate which varies little and is lower than the preferred orientation rate of the base layer (131); and a surface layer (135) grown at the upper side of the low-energy layer (133) and having a preferred orientation rate which becomes higher towards a surface of the poly-Si film.