Abstract:
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
Abstract:
Technology for a user equipment (UE) to report periodic channel state information (CSI) is disclosed. The UE can generate a plurality of CSI reports for serving cells for transmission in a subframe. Each CSI report can correspond to a physical uplink control channel (PUCCH) reporting type among a plurality of CSI processes having a CSI process index (CSIProcessIndex) and a serving cell index (ServCellIndex). The UE can determine different priorities corresponding to each of the plurality of PUCCH reporting types. The UE can drop CSI reports corresponding to all CSI processes except a CSI process having the lowest CSIProcessIndex. The UE can drop CSI reports corresponding to all ServCellIndexes except a CSI report with the lowest ServCellIndex. The UE can multiplex at least one non-colliding CSI report from among CSI reports that are not dropped and hybrid automatic repeat request-acknowledgement (HARQ-ACK) feedback bits for transmission to an eNodeB.
Abstract:
Embodiments for providing fast modulation and coding scheme adaptation for LTE regardless of transmission using single-user multiple-input and multiple-output (SU-MIMO) or multiple-user multiple-input and multiple-output are generally described herein. In some embodiments, channel state information reference signals are sent to user equipment by a node. First channel quality indication feedback based on the channel state information reference signals is received from the user equipment. Physical downlink shared channel data and demodulation reference signals are transmitted using a first modulation and coding scheme based on the first channel quality indication feedback. Second channel quality indication feedback based on measurements performed by the user equipment on the demodulation reference signals is received by a node. Physical downlink shared channel data is transmitted using a second modulation and coding scheme based on the second channel quality indication feedback.
Abstract:
Embodiments of a system and method for providing dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) transmission with enhanced physical downlink control channels are generally described herein. In some embodiments, a receiver is arranged to receive, on an enhanced physical downlink control channel (ePDCCH), one of a lowest control channel element index (nCCE) and a lowest enhanced control channel element index (neCCE), a user equipment specific starting offset (NPUCCH(1)) and at least one additional offset-related parameter. A processor determines allocation of an uplink resource of a physical uplink control channel (PUCCH) for HARQ-ACK transmission based the one of a lowest control channel element index (nCCE) and a lowest enhanced control channel element index (neCCE), the user equipment specific starting offset (NPUCCH(1)) and at least one selected from the at least one additional offset-related parameter. A transmitter transmits a signal on the PUCCH using the allocated uplink resource.
Abstract:
Wireless device, method, and computer readable media are disclosed for determining which channel status information (CSI) report of a user equipment (UE) to drop from a physical uplink control channel (PUCCH) packet. The method may include determining that a first CSI report and a second CSI report are to be sent in the PUCCH, where the first CSI report has a first reporting type and a first CSI sub-frame set, and the second CSI report has a second reporting type and a second CSI sub-frame set. The method may include determining to drop the first CSI report if the first CSI sub-frame set has a second lower priority than the second CSI sub-frame set. The determination to drop may be further based on a CSI processor index, serving cell index, and the CSI report priority.
Abstract:
Technology for downlink (DL) grant validation is disclosed. One method can include a wireless device receiving from a node a downlink grant masked with a cell radio network temporary identifier (C-RNTI) for a resource allocation (RA) including an enhanced physical downlink control channel (ePDCCH) physical resource block (PRB) carrying the downlink grant. The wireless device can validate a downlink control information (DCI) format of the downlink grant. The at least two UERS ports can be used to transmit two CCEs. The wireless device can determine that the downlink grant is received with a non-matching cyclic redundancy check (CRC) when the DCI format is not validated.
Abstract:
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for transmitting periodic channel state information having large payload sizes. Other embodiments may be described and claimed.
Abstract:
Methods and apparatuses for communicating in a wireless network include provision of interfering signal characteristics information to a user equipment to facilitate suppression of an interfering signal present in a downlink signal being received at the user equipment.
Abstract:
Technology for periodic channel state information (CSI) reporting is disclosed. One method can include a user equipment (UE) identifying a configured CSI reporting instance for a secondary cell to report the periodic CSI to a node based on a CSI reporting configuration of the secondary cell. The UE can determine that the configured CSI reporting instance of the secondary cell used to report the periodic CSI does not correspond with an uplink (UL) subframe of a primary cell. The UE can transmit the periodic CSI report for the secondary cell, to the node, using a physical uplink shared channel (PUSCH) on the secondary cell when the periodic CSI reporting instance for the secondary cell does not correspond with the UL subframe of the primary cell and an UL-SCH (Uplink Shared Channel) is available in a subframe that corresponds to the periodic CSI reporting instance of the secondary cell.