Abstract:
A semiconductor device and associated methods are disclosed. In one example, the electronic device includes a photonic die and a glass substrate. In selected examples, the semiconductor device includes one or more turning mirrors to direct an optical signal between the photonic die and the glass substrate. Configurations of turning mirrors are provided to improve signal integrity and manufacturability.
Abstract:
A semiconductor device and associated methods are disclosed. In one example, the electronic device includes a photonic die and a glass substrate. In selected examples, the semiconductor device includes one or more turning mirrors to direct an optical signal between the photonic die and the glass substrate. Configurations of turning mirrors are provided to improve signal integrity and manufacturability.
Abstract:
An integrated circuit assembly may be formed comprising an electronic substrate, at least one integrated circuit device electrically attached to the electronic substrate, a mold material layer abutting electronic substrate and substantially surrounding the at least one integrated circuit, and at least one structure within the mold material layer, wherein the at least one structure comprises a material having a modulus of greater than about 20 gigapascals and a thermal conductivity of greater than about 10 watts per meter-Kelvin.
Abstract:
An integrated circuit package may be formed having at least one heat dissipation structure within the integrated circuit package itself. In one embodiment, the integrated circuit package may include a substrate; at least one integrated circuit device, wherein the at least one integrated circuit device is electrically attached to the substrate; a mold material on the substrate and adjacent to the at least one integrated circuit device; and at least one heat dissipation structure contacting the at least one integrated circuit, wherein the at least one heat dissipation structure is embedded either within the mold material or between the mold material and the substrate.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
Abstract:
Techniques and mechanisms for mitigating warpage of structures in a package. In an embodiment, a packaged integrated circuit device includes a mold compound disposed at least partially around an integrated circuit chip. The mold compound comprises fibers suspended in a media that is to aid in mechanical reinforcement of such fibers. The reinforced fibers contribute to mold compound properties that resist warping of the IC chip that might otherwise take place as a result of solder reflow or other processing. A modulus of elasticity of the mold compound is equal to or more than three GigePascals (3 GPa), where the modulus of elasticity corresponds to a temperature equal to two hundred and sixty degrees Celsius (260° C.). In another embodiment, a spiral flow value of the mold compound is equal to or more than sixty five centimeters (65 cm).
Abstract:
Embodiments of the present disclosure are directed to techniques and configurations for an integrated circuit (IC) package having an underfill layer with filler particles arranged in a generally random distribution pattern. In some embodiments, a generally random distribution pattern of filler particles may be obtained by reducing an electrostatic charge on one or more components of the IC package assembly, by applying a surface treatment to filler to reduce filler electrical charge, by applying an electric force against the filler particles of the underfill material in a direction opposite to a direction of gravitational force, by using an underfill material with a relatively low maximum filler particle size, and/or by snap curing the underfill layer at a relatively low temperature. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present description include methods for attaching a microelectronic device to a microelectronic substrate with interconnection structures after disposing of an underfill material on the microelectronic device, wherein filler particless within the underfill material may be repelled away from the interconnection structures prior to connecting the microelectronic device to the microelectronic structure. These methods may include inducing a charge on the interconnection structures and may include placing the interconnection structures between opposing plates and producing a bias between the opposing plates after depositing the underfill material on the interconnection structures.
Abstract:
Methods and apparatus to connect interconnect bridges to package substrates are disclosed. An example package substrate includes a dielectric layer including a cavity, a first contact pad positioned in the cavity, a first semiconductor die including a second contact pad and a third contact pad, the second contact pad positioned on a first surface of the first semiconductor die, the third contact pad positioned on a second surface of the first semiconductor die, the second surface opposite the first surface, the second contact pad coupled to the first contact pad, the third contact pad to be coupled to a second semiconductor die, and a non-conductive material surrounding the first contact pad and the second contact pad.
Abstract:
Methods and apparatus to reduce solder bump bridging between two substrates. An apparatus includes a first substrate including a first bump and a second bump spaced apart from the first bump, the first bump including a first base, the second bump including a second base; and a second substrate including a third bump and a fourth bump spaced apart from the third bump, the third bump including a third base, the fourth bump including a fourth base, the first base electrically coupled to the third base by first solder, the second base electrically coupled to the fourth base by second solder, the first solder having a first volume, the second solder having a second volume, the first volume less than the second volume.