Abstract:
A polymer thermal interface material is described that has enhanced thermal conductivity. In one example, a vinyl-terminated silicone oil is combined with a silicone chain extender, and a thermally conductive filler comprising at least 85% by weight of the material, and comprising surface wetted particles with a range of shapes and sizes. The material may be used for bonding components inside a microelectronic package, for example.
Abstract:
An integrated circuit package includes a first die and second die above a substrate, and a vapor chamber above at least one of the first and second die. A vapor space within the vapor chamber is separated into at least a first section and a second section. The first section may be over the first die, and the second section may be over the second die, for example. The structure separating the first and second sections at least partly restricts flow of vapor between the first and second sections, thereby preventing or reducing thermal cross talk between the first and second dies. In some cases, an anisotropic thermal material is above one of the first or second die, wherein the anisotropic thermal material has substantially higher thermal conductivity in a direction of a heat sink than a thermal conductivity in a direction of a section of the vapor chamber.
Abstract:
An integrated circuit package may be formed having at least one heat dissipation structure within the integrated circuit package itself. In one embodiment, the integrated circuit package may include a substrate; at least one integrated circuit device, wherein the at least one integrated circuit device is electrically attached to the substrate; a mold material on the substrate and adjacent to the at least one integrated circuit device; and at least one heat dissipation structure contacting the at least one integrated circuit, wherein the at least one heat dissipation structure is embedded either within the mold material or between the mold material and the substrate.
Abstract:
This disclosure relates generally to devices, systems, and methods for making a flexible microelectronic assembly. In an example, a polymer is molded over a microelectronic component, the polymer mold assuming a substantially rigid state following the molding. A routing layer is formed with respect to the microelectronic component and the polymer mold, the routing layer including traces electrically coupled to the microelectronic component. An input is applied to the polymer mold, the polymer mold transitioning from the substantially rigid state to a substantially flexible state upon application of the input.
Abstract:
A microelectronic package includes a die which may include MEMS and CMOS circuitry for analyzing a fluid. A defined path is provided for channeling fluid to the die. Rather than patterning depressions or physical channels in the package substrate, the defined paths comprise coatings that may channel the flow of liquids to the die for biological sensor type applications. The defined paths may comprise a wetting coating that has an affinity to fluids. Similarity, the defined paths may comprise a dewetting coating the tend to repel fluid surrounding the paths.
Abstract:
Microelectronic devices, assemblies, and systems include a microelectronic die and composite material to conduct heat from the microelectronic die such that the composite material includes polymer chains chemically bonded to fill particles having a hexagonal lattice of carbon atoms such as graphene sheet fill particles and/or carbon nanotube fill particles.
Abstract:
Multi-die semiconductor device packages include a solder thermal interface material for a processor device, and a carbon-pad thermal interface material for a high-bandwidth memory device. Disparate dice are packaged against a heat sink on the device backsides, and on a semiconductor package substrate on the device active surfaces and metallizations.
Abstract:
A fluid applicator configured to apply a fluid to at least one substrate feature includes a manifold plate having an inflow orifice and a manifold reservoir. A distributor plate is coupled with the manifold plate. The distributor plate includes a distributor surface extending across the manifold reservoir, and a distributor port array spread across the distributor surface and in communication with the manifold reservoir. A compressible reticulated media is configured for applying the fluid to the at least one substrate feature. The compressible reticulated media includes an input interface coupled along the distributor surface, and a substrate interface having an applicator profile corresponding to a feature profile of the at least one substrate feature. Reticulations extend from the input interface to the substrate interface, and the reticulations are distributed across the substrate interface.
Abstract:
A process for applying an underfill material to a die is disclosed. A wafer is diced into a plurality of dies (without having any underfill film thereon) such that the dies have exposed bumps prior to an underfill process. Thus, the dies can be tested about their bump-sides because the bumps are entirely exposed for testing. The dies are then reconstituted bump-side up on a carrier panel in an array such that the dies are separated from each other by a gap. Underfill material (e.g., epoxy flux film) is then vacuum laminated to the carrier panel and the plurality of dies to encapsulate the dies. The underfill material is then cut between adjacent dies such that a portion of the underfill material covers at least one side edge of each die. The encapsulated dies are then removed from the carrier panel, thereby being prepared for a thermal bonding process to a substrate. Associated devices are provided.
Abstract:
An apparatus is provided which comprises: a die comprising an integrated circuit, a first material layer comprising a first metal, the first material layer on a surface of the die, and extending at least between opposite lateral sides of the die, a second material layer comprising a second metal over the first material layer, and a third material layer comprising silver particles and having a porosity greater than that of the second material layer, the third material layer between the first material layer and the second material layer. Other embodiments are also disclosed and claimed.