Abstract:
A method for detecting a code word is proposed, wherein the code word is a code word of one of at least two codes, wherein n states are read from memory cells of a memory, respectively. The n states are determined in a time domain for each of the at least two codes, wherein additionally n states are read from further memory cells and at least one reference value is determined therefrom and wherein the at least one reference value is taken as a basis for determining which of the at least two codes is the correct code. A corresponding device is furthermore specified.
Abstract:
A method for data processing is disclosed. A blank state is determined for several data bits based on a majority decision. Each data bit is represented by a group of at least two memory cells. The at least two memory cells of this group are complementary cells of a differential read memory.
Abstract:
A method is suggested for updating a memory comprising a first memory area and a second memory area, the method comprising the steps: (a) using a first image of data that is stored in the first memory area while writing a second image of data to the second memory area; (b) switching to using the second image of data that is stored in the second memory area; (c) writing an inverse image of the second image to the first memory area; and (d) using the first memory area and the second memory area as a differential memory. Also, a corresponding device is provided.
Abstract:
The disclosure proposes a circuit including a memory which has a multiplicity of memory cells, the memory having a first area and a second area, at least one memory cell comprising a part of the first area and a part of the second area, the first area having a lower reliability than the second area, and the circuit being set up in such a manner that first bits are stored in the first area and second bits are stored in the second area. A circuit for reading the memory and methods for writing to and reading the memory are also disclosed.
Abstract:
A method is suggested for updating a memory comprising a first memory area and a second memory area, the method comprising the steps: (a) using a first image of data that is stored in the first memory area while writing a second image of data to the second memory area; (b) switching to using the second image of data that is stored in the second memory area; (c) writing an inverse image of the second image to the first memory area; and (d) using the first memory area and the second memory area as a differential memory. Also, a corresponding device is provided.
Abstract:
A memory device includes a memory with first memory cells and second memory cells, which are different from the first memory cells. In the first memory cells there is stored a first bit sequence and in the second memory cells there is stored a second bit sequence. The memory device includes a memory controller, which is configured to check the first bit sequence with a frequency (x1/T) assigned to the first memory cells. The frequency (x1/T) assigned to the first memory cells depends on an item of reliability information for the first memory cells. The memory controller is configured in the case of an error state to correct an erroneous bit of the first bit sequence and to write back at least the corrected bit into the memory. The second bit sequence is checked less often than the first bit sequence on the basis of an item of reliability information for the second memory cells.
Abstract:
A method for data processing is suggested including: (i) transforming electrical variables for each cell of a data bit of a memory into a time domain; and (ii) determining a predetermined state by comparing the transformed electrical variables of at least two data bits.
Abstract:
A memory device includes a memory with first memory cells and second memory cells, which are different from the first memory cells. In the first memory cells there is stored a first bit sequence and in the second memory cells there is stored a second bit sequence. The memory device includes a memory controller, which is configured to check the first bit sequence with a frequency (×1/T) assigned to the first memory cells. The frequency (×1/T) assigned to the first memory cells depends on an item of reliability information for the first memory cells. The memory controller is configured in the case of an error state to correct an erroneous bit of the first bit sequence and to write back at least the corrected bit into the memory. The second bit sequence is checked less often than the first bit sequence on the basis of an item of reliability information for the second memory cells.
Abstract:
A system and method for performing three scans for testing an address decoder and word line drive circuits is disclosed. The first scan determines whether only one word line is selected. The second scan determines whether the word line rise time to a target voltage level is within a specified time. Finally, the third scan determines whether the correct word line was selected.
Abstract:
Embodiments relate to system and methods including a plurality of nonvolatile memory elements wherein sets of least two nonvolatile memory elements each share one select element for selecting one of the nonvolatile memory elements of a particular one of the sets of nonvolatile memory elements for a read operation or a program operation.