Abstract:
Embodiments of user equipment (UE) and method for handover enhancement using reference signal received quality (RSRQ) in a wireless network are generally described herein. In some embodiments, a UE adaptively selects handover initiation parameters based, at least in part, on a velocity of the UE. The UE may determine an RSRQ of a serving cell and an RSRQ of a target cell and may transmit a measurement report to a serving eNB for handover from the serving cell to the target cell when the target cell RSRQ exceeds the serving cell RSRQ in accordance with the selected handover initiation parameters. In some of these embodiments, the handover initiation parameters may include an offset value, such as an A3offset value, and a time-to-trigger (TTT) that comprise an A3offset-TTT pair.
Abstract:
In accordance with some embodiments, a new discontinuous reception (DRX) parameter change may be received in user equipment while the user equipment is using an existing DRX parameter. The user equipment continues to use the existing parameter and determines when a new discontinuous reception cycle is starting. The change to the next discontinuous reception parameter is implemented in the new discontinuous reception cycle. In some embodiments by having an agreed upon time to implement the change to the new parameter, signaling between an enhanced node B and user equipment may be reduced. Signaling overhead is a serious impediment to achieving high efficiency in wireless communications.
Abstract:
Embodiments of apparatus, packages, computer-implemented methods, systems, devices, and computer-readable media (transitory and non-transitory) are described herein for ascertaining, e.g., by a traffic detection function (“TDF”), that a first user equipment (“UE”) and a second UE are, potentially, sufficiently proximate to each other to wirelessly exchange data directly. In various embodiments, an evolved serving mobile location center (“E-SMLC”) may be instructed, e.g., by the TDF, to obtain location change data associated with the first and second UEs. In various embodiments, a determination may be made, e.g., by the TDF, based on the location change data, whether the first and second UEs are sufficiently proximate to exchange data directly, and whether the first and second UEs are likely to remain proximate for at least a predetermined time interval. In various embodiments, the first and second UEs may be caused to commence device-to-device (“D2D”) communication based on the determination.
Abstract:
Embodiments of system, device, and method configurations for managing inter-radio access technology (inter-RAT) mobility of handovers between a UMTS Terrestrial Radio Access Network (UTRAN) or GSM EDGE Radio Access Network (GERAN) and an evolved UMTS Terrestrial Radio Access Network (E-UTRAN) to avoid scenarios of in-device coexistence (IDC) interference are disclosed herein. In one example, the existence and types of IDC interference with an E-UTRAN Long Term Evolution (LTE)/Long Term Evolution-Advanced (LTE-A) network are determined and communicated to the UTRAN/GERAN in an IDC indication signal. The IDC indication signal may communicate the existence and type of IDC interference occurring at user equipment, such as between licensed LTE/LTE-A and unlicensed industrial scientific medical (ISM) radio frequency bands. Accordingly, the UTRAN/GERAN may use information provided from the IDC indication signal to prevent a handover to the E-UTRAN that would result in IDC interference.
Abstract:
Embodiments of apparatus, packages, computer-implemented methods, systems, devices, and computer-readable media (transitory and non-transitory) are described herein for ascertaining, e.g., by a traffic detection function (“TDF”), that a first user equipment (“UE”) and a second UE are, potentially, sufficiently proximate to each other to wirelessly exchange data directly. In various embodiments, an evolved serving mobile location center (“E-SMLC”) may be instructed, e.g., by the TDF, to obtain location change data associated with the first and second UEs. In various embodiments, a determination may be made, e.g., by the TDF, based on the location change data, whether the first and second UEs are sufficiently proximate to exchange data directly, and whether the first and second UEs are likely to remain proximate for at least a predetermined time interval. In various embodiments, the first and second UEs may be caused to commence device-to-device (“D2D”) communication based on the determination.
Abstract:
Embodiments of user equipment (UE) and method for handover enhancement using reference signal received quality (RSRQ) in a wireless network are generally described herein. In some embodiments, a UE adaptively selects handover initiation parameters based, at least in part, on a velocity of the UE. The UE may determine an RSRQ of a serving cell and an RSRQ of a target cell and may transmit a measurement report to a serving eNB for handover from the serving cell to the target cell when the target cell RSRQ exceeds the serving cell RSRQ in accordance with the selected handover initiation parameters. In some of these embodiments, the handover initiation parameters may include an offset value, such as an A3offset value, and a time-to-trigger (TTT) that comprise an A3offset-TTT pair.
Abstract:
Technology for performing a handover in a heterogeneous wireless network (HetNet) is disclosed. One method comprises receiving, at an anchor serving cell in the HetNet, channel measurement reports made by a user equipment (UE) for a plurality of cells. A transmission point change request can be sent, based on the channel measurements for the UE, from the anchor serving cell to a target transmission point. The target transmission point is located in one of the plurality of cells. A transmission point change indicator is sent from the anchor cell to the UE to indicate a change in TP with which the UE will communicate via an air interface, while maintaining a connection to the anchor serving cell.
Abstract:
Technology for enabling small data transmissions in a user equipment (UE) configured for machine type communication (MTC) is disclosed. One method comprises receiving, by the UE from an evolved node (eNB), a system information block (SIB). The SIB can include system information relating to small data transmissions for MTC. The system information included in the SIB is read by the UE. The small data transmission is performed, from the UE to the eNB, based on the system information included in the SIB.
Abstract:
A system and method for authorizing access to a transmission station for a mobile device is disclosed. The mobile device can receive device extended access barring (EAB) configuration information in a broadcast control channel (BCCH) from a transmission station. The mobile device can bar the mobile device configured for EAB and having characteristics identified in the EAB configuration information for barring from accessing the transmission station. Alternatively, a system and method for barring a mobile device from accessing a transmission station is disclosed. The transmission station can receive from the mobile device a radio resource control (RRC) connection establishment request. The transmission station can configure a system information block (SIB) with extended access barring (EAB) configuration information. The transmission station can broadcast the SIB with EAB configuration information to the mobile device.
Abstract:
Technology for reducing coexistence interference in a multi-radio device is disclosed. One method comprises applying discontinuous reception (DRX) to a user equipment (UE) having a plurality of radio transceivers. The DRX can include a long DRX cycle for the UE. One of a 2 milliseconds (ms), 5 ms, and 8 ms cycle start offset period may be provided for the long DRX cycle to reduce coexistence interference between the plurality of radio transceivers in the UE. The cycle start offset period is selected to provide at least one Hybrid Automatic Repeat Request (HARQ) process reservation pattern to reduce the coexistence interference between the plurality of radio transceivers in the UE.