Abstract:
A heat transfer apparatus comprises a load frame having load springs and an open region that exposes an electronic component. The load frame is mounted to a printed circuit board on which the electronic component is mounted. A heat sink assembly is disposed on the load frame and has a main body in thermal contact with the electronic component through a thermally conductive material. The heat sink assembly has load arms for engaging the load springs. A load plate extends between the load arms and has an actuation element operative to displace the main body relative to the load plate and thereby resiliently deform the load springs and produce a load force that compresses the thermally conductive material to achieve a desired thermal interface gap between the main body and the electronic component. Non-influencing fasteners secure the heat sink to the load frame and maintain the desired thermal interface gap.
Abstract:
A method and a surface mount technology (SMT) pad structure are provided for implementing enhanced solder joint robustness. The SMT pad structure includes a base SMT pad. The base SMT pad receives a connector for soldering to the SMT pad structure. A standoff structure having a selected geometry is defined on the base SMT pad to increase thickness of the solder joint for the connector.
Abstract:
An electrical contact assembly includes a first module (21a, 21b, 22) having a first set of electrical contacts, a second module (10) having a second set of electrical contacts, a shape generating module (32, 34, 36), and a clamping arrangement (24, 25, 26, 27, 28, 29) for clamping the first, second and shape generating modules together. The shape generating module (32, 34, 36) imparts a desired shape to the second module (10) for urging the second set of electrical contacts toward the first set of electrical contacts, such that clamping the modules together results in a positive contact force between the first and second sets of electrical contacts that is substantially uniform across the sets of electrical contacts. The shape generating module includes a first insulating layer (34), a second insulating layer (32) and a shape producing layer (36) disposed between the first and second insulating layers. The shape producing layer (36) includes an adhesive that flows and cures upon application of a heat treatment to produce the desired shape.
Abstract:
A heat transfer apparatus comprises a load frame having load springs and an open region that exposes an electronic component. The load frame is mounted to a printed circuit board on which the electronic component is mounted. A heat sink assembly is disposed on the load frame and has a main body in thermal contact with the electronic component through a thermally conductive material. The heat sink assembly has load arms for engaging the load springs. A load plate extends between the load arms and has an actuation element operative to displace the main body relative to the load plate and thereby resiliently deform the load springs and produce a load force that compresses the thermally conductive material to achieve a desired thermal interface gap between the main body and the electronic component. Non-influencing fasteners secure the heat sink to the load frame and maintain the desired thermal interface gap.
Abstract:
A method to replace an electrical interface on a printed circuit board having a plurality of contact pads on a top surface, the contact pads being connected to conducting material extending through said circuit board. For the contact pad being replaced, drilling a hole through said printed circuit board at that location, and removing any remaining conductor material attached to the contact pad on the top board surface. Providing a replacement conductor/contact pad structure having a generally T-configuration with a stem and a head that completely surrounds the stem, wherein said head has a diameter greater than the diameter of the drilled hole. Inserting the replacement conductor/contact pad into the hole with said stem extending beyond the second surface of the board with the bottom surface of the head being in contact with the first surface of said board. A replacement conductor/contact pad on repaired board is also described.
Abstract:
A conductive sash is etched around the periphery of a land grid array interconnection on a carrier for dense integrated circuit connections. If the array comprises more than one module or module chip domain, the conductive sash is also positioned between the modules. The dimensions of the sash are such that it is slightly larger than a frame of an interposer or other electrical connector which is placed upon the array. In this fashion, the interposer or other electrical connector rests upon the sash and provides protection against particulate and gaseous contamination of the array. Preferably, the sash is manufactured along with the array of electrical interconnections of the carrier, and during the manufacture the sash provides more homogeneous current density to the outer interconnections of the array during component processing which in turn provides more predictable and consistent surface topography of the carrier and permits more uniform mechanical loading of the interposer or other connector onto the array when assembled.
Abstract:
A method for processing circuit boards containing area array surface treated bonding sites, such as noble metal terminal pads of a Land Grid Array (LGA) assembly. The circuit board includes a plurality of apertures patterned about the bonding site to form a footprint. A protective cover shaped to conform to the footprint includes posts registered to removably fit into the apertures. The protective cover remains overlaid on the circuit board during fabrication processes such as solder screen printing, rework, and washing, and then removed. Thus, contamination from the fabrication processes is avoided, as well as eliminating possible sources of contamination from use of adhesive tape for protection.
Abstract:
Fine pitch area array packaging is achieved using a via-in-pad design within the area array attach portion of a printed circuit board (PCB). The limitation of the design is the wicking action, whereby solder applied to the capture pad contact surface is depleted by capillary action into the via hole when reflowed, causing insufficient solder to be present at the contact surface to effect reliable and repeatable electrical connections. In one implementation, an initial application of solder is applied to plug the via hole with a material having a higher final melting temperature than eutectic solder, thereby providing a stable plug. This plug is formed by the initial solder application that may be either a eutectic solder containing a third metal that forms intermetallic compounds, when reflowed, that elevate the liquidus temperature or a solder having a different formulation with an inherent higher melting temperature. An alternative implementation is to plate the via hole with a material, such as nickel, which prevents eutectic solder, applied to the via capture pad contact surface, from wetting the hole surface and being drawn away from the contact surface by capillary action. Thus, the solder, applied to the via capture pad and used to establish an electrical connection is not depleted.
Abstract:
A direct chip attach to heatsink structure is shown and described which implements rework when the chip must be removed and replaced. A laminated heatsink includes a metal heatsink with a foil layer adhered to the chip attachment surface with the assembly secured to a carrier at a cutout opening therein that defines the chip attach site. The adhesive, either a dry film adhesive or a pressure sensitive adhesive, secures foil layer to heatsink and provides the interface of separation when a chip must be removed and replaced. By peeling the foil away from the heatsink, the foil, chip and non-reworkable die attach adhesive are removed as a unit, leaving no chip attach adhesive residue at the attachment site to be scraped or abraded away. The replacement chip can be installed either by directly installing with new die attach adhesive or by first restoring the foil layer prior to chip installation. The foil may be applied over the entire surface of the heatsink or may be patterned to provide the laminated foil coating only beneath the chip attach site. Further, the foil and heatsink may be of dissimilar metals to impart varying characteristics, such as a solderable surface to an aluminum heatsink.Also, the technique would be applicable to direct chip attachment directly to a rigid or flexible electronic circuit carrier assembly. In another form, the invention may be implemented using a foil layer with adhesive on both sides to secure the chip to a heatsink at the carrier assembly chip attach location. A further form of the invention uses a tape cavity packaging structure wherein the carrier assembly includes a laminated carrier/heatsink with aligned openings that create a chip attach cavity in the package and foil bonded to the heatsink across the base of the chip cavity by a layer of adhesive that also presents a chip attach adhesive across the base of the chip attach cavity. The structure affords a low profile assembly, enables rework/replacement, shortens wire lengths and reduces wirebond loop heights.
Abstract:
A flex cable pad on pad terminal structure is shown having raised connector pads formed using a rigid stiffener with raised features or bumps formed integral with the stiffener; aligned with the connector pad surfaces; and laminated to the flex cable surface opposite the surface presenting the exposed connector pad surfaces, to create raised contact pads that are not subject to relaxation over time when subjected to high contact normal forces. The use of a metal stiffener which has been coined to produce the raised features aligned with the contact pad locations and lamination using a film or layer of thermocuring adhesive affords an economical process and assembly technique that also effects hot deformation of the flex cable at the contact pad locations.