Abstract:
An integrated electronic device, delimited by a first surface and by a second surface and including: a body made of semiconductor material, formed inside which is at least one optoelectronic component chosen between a detector and an emitter; and an optical path which is at least in part of a guided type and extends between the first surface and the second surface, the optical path traversing the body. The optoelectronic component is optically coupled, through the optical path, to a first portion of free space and a second portion of free space, which are arranged, respectively, above and underneath the first and second surfaces.
Abstract:
Various embodiments of the present disclosure provide a power device including at least one first conductive element adapted to generate a magnetic field when traversed by a current, and characterised in that it further comprises a Hall sensor electrically insulated from the first conductive element. The sensor and the first conductive element are mutually arranged so as to detect said magnetic field indicative of the current that traverses the first conductive element.
Abstract:
An electronic system supports superior coupling by implementing a communication mechanism that provides at least for horizontal communication for example, on the basis of wired and/or wireless communication channels, in the system. Hence, by enhancing vertical and horizontal communication capabilities in the electronic system, a reduced overall size may be achieved, while nevertheless reducing complexity in printed circuit boards coupled to the electronic system. In this manner, overall manufacturing costs and reliability of complex electronic systems may be enhanced.
Abstract:
A substrate includes first and second semiconductor layers doped with opposite conductivity type in contact with each other at a PN junction to form a junction diode. At least one through silicon via structure, formed by a conductive region surrounded laterally by an insulating layer, extends completely through the first semiconductor layer and partially through the second semiconductor layer with a back end embedded in, and in physical and electrical contact with, the second semiconductor layer. A first electrical connection is made to the first through silicon via structure and a second electrical connection is made to the first semiconductor layer. A testing current is applied to and sensed at the first and second electrical connections in order to detect a defect in the at least one through silicon via structure.
Abstract:
An embodiment of an electronic system includes a first electronic circuit and a second electronic circuit. The electronic system further includes a resonant LC circuit having a resonance frequency for coupling the first electronic circuit and the second electronic circuit; each electronic circuit includes functional means for providing a signal at the resonance frequency to be transmitted to the other electronic circuit through the LC circuit andor for receiving the signal from the other electronic circuit. The LC circuit also include capacitor means having at least one first capacitor plate included in the first electronic circuit and at least one second capacitor plate included in the second electronic circuit. The LC circuit further includes first inductor means included in the first electronic circuit andor second inductor means included in the second electronic circuit. The at least one capacitor plate of each electronic circuit is coupled with the corresponding functional means through the possible corresponding inductor means.
Abstract:
An electronic device for electromagnetic expansion and concentration is described, including: —a module to be monitored including a first antenna and an integrated control circuitry, the first antenna being electrically coupled to the integrated control circuitry; an electromagnetic expansion and concentration module comprising a second antenna configured to communicate with a remote antenna of an external data collection and control device, relative to the electromagnetic expansion and concentration module, by an electromagnetic coupling, said electromagnetic expansion and concentration module comprising a third antenna electrically coupled to said second antenna, said third antenna being configured to communicate with said first antenna of the module to be monitored by a near-field magnetic coupling. The second antenna is configured to communicate with said remote antenna, relative to the electromagnetic expansion and concentration module by a far-field electromagnetic coupling. The electromagnetic expansion and concentration module further comprises a fourth antenna electrically coupled between said second antenna and said third antenna, said fourth antenna being configured to communicate with a further remote antenna of a further external data collection and control device, relative to the electromagnetic expansion and concentration module by a near-field magnetic coupling.
Abstract:
A building structure includes a block of building material and a magnetic circuit buried in the block of building material. The structure also includes a plurality of sensing devices buried in the block of building material. Each sensing device may include a contactless power supplying circuit magnetically coupled with the magnetic circuit to generate a supply voltage when the magnetic circuit is subject to a variable magnetic field.
Abstract:
A planar electric circuit board may include a planar support of a foldable material defining a base surface and wings coupled to the base surface along respective folding lines so that the wings, when folded along the folding lines, are erected with respect to the base surface and remain in that position. An auxiliary circuit is on the planar support and may include pairs of capacitive coupling plates defined on the wings and on the base surface, and electric communication lines coupled to corresponding ones of the pairs of capacitive coupling plates.