Abstract:
A semiconductor device includes a second insulating layer disposed on a substrate and that includes a first trench that extends in a first direction, a first via disposed in the first hole, a first interconnection layer disposed in the first trench on the first via and that has an upwardly upper region, and a third insulating layer disposed on the second insulating layer and that includes a second hole and a second trench connected to the second hole. The first trench has inclined side surfaces such that a width of the first trench increases in a direction toward the substrate, the second hole has inclined side surfaces such that a width of the second hole decreases in the direction toward the substrate, and a lower portion of the second hole is wider than an upper surface of the first interconnection layer.
Abstract:
A method of grinding a substrate is provided. A substrate including a first main surface having a semiconductor layer formed thereon and a second main surface opposed to the first main surface is prepared. A support film is attached to the first main surface using a glue. The second main surface of the substrate is ground so as to reduce a thickness of the substrate. The support film is removed from the first main surface by applying force to the support film in a non-traverse direction.
Abstract:
A boot Read-Only Memory (ROM) update method and a boot-up method of an embedded system are provided. The boot Read-Only Memory (ROM) update method of an embedded system including a memory and a ROM. The memory includes a user data area and a boot ROM area that includes a first area and a second area. The ROM copies a first boot code from the boot ROM area during boot-up. The boot ROM update method includes writing a second boot code to the second area in response to a first ROM update command. The second boot code includes a second boot ROM image and a second signature for the second boot ROM image. The method also includes verifying validity of the second signature and, if the second signature is valid, swapping the first area and the second area. The first boot code is disposed in the first area and includes a first boot ROM image and a first signature for the first boot ROM image.
Abstract:
Semiconductor devices having improved performance and reliability. For example, a semiconductor device may include a substrate, an active pattern extending in a first direction, on the substrate, a plurality of gate structures on the active pattern, each including a gate electrode that crosses the active pattern. A lower active contact may be connected to a source/drain pattern. A trench may expose the lower active contact, and a width of a bottom surface of the trench in the first direction may be greater than a width of an upper surface of the lower active contact in the first direction. An etching stop film may be along the bottom surface of the trench and side walls of the trench, and have an uppermost surface coplanar with an upper surface of an upper active contact that extends through the etching stop film and is connected to the lower active contact.
Abstract:
An electronic device disclosed herein includes a cover glass, a display panel exposed through the cover glass, a flexible substrate extending from a periphery of the display panel and bent and positioned on a rear surface of the display panel, a display driver integrated circuit (DDI) disposed on the flexible substrate, a sensing circuit disposed on the flexible substrate and electrically connected with the display driver integrated circuit, signal lines that transmit a signal to sub-pixels arranged on the display panel, and a sensing line passing through a peripheral portion of the display panel and the flexible substrate and electrically connected with at least some of the signal lines through the sensing circuit.
Abstract:
A direct-type reflective diffusion lens and a lighting installation including the reflective diffusion lens. The reflective diffusion lens includes a first reflective surface concave and having a longitudinal cross-section with a parabola shape or normal distribution shape to totally reflect incident light, and a bottom surface comprising a light incident surface concave toward the first reflective surface. The reflective diffusion lens includes a second reflective surface having a longitudinal cross-section inclined by a first angle with respect to a central axis of the lens to totally reflect incident light and a refractive surface connecting the first reflective surface with the bottom surface. The refractive surface includes a first refractive surface having a longitudinal cross-section inclined by a second angle with respect to the central axis and a second refractive surface having a longitudinal cross-section inclined by a third angle with respect to the central axis.
Abstract:
An apparatus for determining alignment of semiconductor processing equipment includes a sensing unit comprising a light emitting unit configured to irradiate a reflection substrate positioned opposite the apparatus and a light accepting unit configured to receive reflected light from the reflection substrate, a control unit configured to determine a gap between the sensing unit and the reflection substrate based on the received reflected light, and a wireless communication unit configured to transmit data regarding the determined gap to an electronic device. Methods of aligning semiconductor processing equipment and methods of fabricating semiconductor devices are also disclosed.
Abstract:
A device for measuring biometric information includes an impedance measurement circuit, a storage circuit, and a control circuit. The impedance measurement circuit receives an electrical signal from a plurality of electrodes when the plurality of electrodes are in contact with a body of a user and measures a bioelectrical impedance using the electrical signal. The storage circuit includes a security area configured to store the bioelectrical impedance, body information of the user, and biometric information of the user obtained from the bioelectrical impedance and the body information. The control circuit includes an authentication means configured to determine access authority to data stored in the security area using an authentication procedure, obtains the biometric information from the bioelectrical impedance and the body information, and manages the security area through the authentication procedure provided by the authentication means.
Abstract:
A CO2 reforming catalyst may include at least one catalyst metal supported in a porous carrier. The at least one catalyst metal may include a transition metal (e.g., Ni, Co, Cr, Mn, Mo, Ag, Cu, Zn, and/or Pd). Each particle of the at least one catalyst metal may be bound with the porous carrier in a form of an alloy. The porous carrier may form a rod-shaped protruding portion around the catalyst metal particle.
Abstract:
There is provided a light emitting diode (LED) package. The LED package includes a package body. The LED package also includes an LED chip mounted on the package body. The LED package further includes a side inclined portion disposed to enclose side surfaces of the LED chip, including a light transmission material and having an upwardly inclined surface. The LED package also includes a wavelength conversion layer disposed on a top surface of the LED chip and the inclined surface of the side inclined portion.