Abstract:
A light-emitting diode including a substrate, a first semiconductor layer disposed on the substrate, an active layer disposed on the first semiconductor layer, a second semiconductor layer disposed on the active layer and having a conductivity type different than that of the first semiconductor layer, and a reflective pattern disposed on the second semiconductor layer and configured to reflect light emitted from the active layer, the reflective pattern having heterogeneous metal layers and configured to absorb stress caused by differences in coefficient of thermal expansion between the heterogeneous metal layers.
Abstract:
Disclosed are a semiconductor device and a method of fabricating the same. A light emitting diode (LED) includes a conductive substrate, and a gallium nitride (GaN)-based semiconductor stack positioned on the conductive substrate. The semiconductor stack includes an active layer that is a semi-polar semiconductor layer. Accordingly, it is possible to provide an LED having improved light emitting efficiency.
Abstract:
An AC light emitting device includes a first light emitting diode chip and a second light emitting diode chip, each of which has a plurality of light emitting cells on a single substrate. A first long-persistent phosphor is positioned on the first light emitting diode chip to perform wavelength conversion for a portion of light emitted from the first light emitting diode chip, and a second long-persistent phosphor is positioned on the second light emitting diode chip to perform wavelength conversion for a portion of light emitted from the second light emitting diode chip. The afterglow luminescence period of the second long-persistent phosphor is different from that of the first long-persistent phosphor.
Abstract:
Exemplary embodiments of the present invention relate to a light-emitting device including a single substrate, at least two light-emitting units disposed on the single substrate, each of the at least two light-emitting units including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, a first electrode connected to the first conductivity-type semiconductor layer, and a second electrode connected to the second conductivity-type semiconductor layer, wherein two light-emitting units of the at least two light-emitting units share the first conductivity-type semiconductor layer.
Abstract:
A light emitting device including a first LED sub-unit having a thickness in a first direction, a second LED sub-unit disposed on a portion of the first LED sub-unit in the first direction, each of the first and second LED sub-units comprising a first-type semiconductor layer, a second-type semiconductor layer, and an active layer, a reflective electrode disposed adjacent to the first LED sub-unit and electrically connected to the first-type semiconductor layer of the first LED sub-unit, and a first ohmic electrode forming ohmic contact with the second-type semiconductor layer of the first LED sub-unit, in which the active layer of the first LED sub-unit is configured to generate light, includes AlxGa(1-x-y)InyP (0≤x≤1, 0≤y≤1), and overlaps the active layer of the second LED sub-unit in the first direction, and the active layer of the second LED sub-unit includes the same material as the active layer of the first LED sub-unit.
Abstract:
A light emitting diode pixel for a display including a first LED sub-unit, a second LED sub-unit disposed on a portion of the first LED sub-unit, a third LED sub-unit disposed on a portion of the second LED sub-unit, and a reflective electrode disposed adjacent to the first LED sub-unit, in which each of the first to third LED sub-units comprises an n-type semiconductor layer and a p-type semiconductor layer, each of the n-type semiconductor layers of the first, second, and third LED stacks is electrically connected to the reflective electrode, and the first LED sub-unit, the second LED sub-unit, and the third LED sub-unit are configured to be independently driven.
Abstract:
A display apparatus includes a display substrate, first micro LED modules arranged on the display substrate, and at least one second micro LED module disposed between the first micro LED modules. Each of the first micro LED modules includes a first substrate, and micro LEDs disposed on the first substrate, the second micro LED module includes a second substrate, and micro LEDs disposed on the second substrate. The first substrate includes a lower body and a top plate located on the lower body. The lower body is recessed from an edge of the top plate, and the second micro LED module is disposed between recessed lower bodies of adjacent first micro LED modules.
Abstract:
A display apparatus includes a display substrate, first micro LED modules arranged on the display substrate, and at least one second micro LED module disposed between the first micro LED modules. Each of the first micro LED modules includes a first substrate and micro LEDs disposed on the first substrate. The second micro LED module includes a second substrate and micro LEDs disposed on the second substrate. The second substrate bridges two adjacent first substrates.
Abstract:
A light emitting device including a first LED sub-unit having a thickness in a first direction, a second LED sub-unit disposed on a portion of the first LED sub-unit in the first direction, each of the first and second LED sub-units comprising a first-type semiconductor layer, a second-type semiconductor layer, and an active layer, a reflective electrode disposed adjacent to the first LED sub-unit and electrically connected to the first-type semiconductor layer of the first LED sub-unit, and a first ohmic electrode forming ohmic contact with the second-type semiconductor layer of the first LED sub-unit, in which the active layer of the first LED sub-unit is configured to generate light, includes AlxGa(1-x-y)InyP (0≤x≤1, 0≤y≤1), and overlaps the active layer of the second LED sub-unit in the first direction, and the active layer of the second LED sub-unit includes the same material as the active layer of the first LED sub-unit.
Abstract:
A light emitting diode including a first conductive type semiconductor layer, a mesa disposed on the first conductive type semiconductor layer, the mesa including an active layer and a second conductive type semiconductor layer, a reflective electrode disposed on the mesa and configured to be in ohmic-contact with the second conductive type semiconductor layer, a current spreading layer disposed on the mesa and the reflective electrode, the current spreading layer including a first portion configured to be in ohmic-contact with an upper surface of the first conductive type semiconductor layer, a first n-contact region spaced apart from a second n-contact region with the mesa disposed between the first and second n-contact regions, and an insulation layer including a first opening exposing the reflective electrode between the first and second n-contact regions. The first and second n-contact regions have a second opening that exposes the first conductive type semiconductor layer.