Abstract:
A device includes a first package connected to an interconnect substrate, wherein the interconnect substrate includes conductive routing; and a second package connected to the interconnect substrate, wherein the second package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler and to a photodetector; a via extending through the substrate; an interconnect structure over the photonic layer, wherein the interconnect structure is connected to the photodetector and to the via; and an electronic die bonded to the interconnect structure, wherein the electronic die is connected to the interconnect structure.
Abstract:
A method for forming the package structure is provided. The method includes forming a die structure over a first surface of a first substrate, and forming a plurality of electrical connectors below a second surface of the first substrate. The method also includes forming a first protruding structure below the second surface of the first substrate, and the electrical connectors are surrounded by the first protruding structure. The method further includes forming a second protruding structure over a second substrate, and bonding the first substrate to the second substrate. The electrical connectors are surrounded by the second protruding structure, and the first protruding structure does not overlap with the second protruding structure.
Abstract:
A device includes a test pad on a chip. A first microbump has a first surface area that is less than a surface area of the test pad. A first conductive path couples the test pad to the first microbump. A second microbump has a second surface area that is less than the surface area of the test pad. A second conductive path couples the test pad to the second microbump.
Abstract:
A device includes a test pad on a chip. A first microbump has a first surface area that is less than a surface area of the test pad. A first conductive path couples the test pad to the first microbump. A second microbump has a second surface area that is less than the surface area of the test pad. A second conductive path couples the test pad to the second microbump.
Abstract:
The present disclosure, in some embodiments, relates to a semiconductor package. The semiconductor package includes an interposer substrate laterally surrounding through-substrate-vias. A redistribution structure is on a first surface of the interposer substrate. The redistribution structure laterally extends past an outermost sidewall of the interposer substrate. A packaged die is bonded to the redistribution structure. One or more conductive layers are arranged along a second surface of the interposer substrate opposite the first surface. A molding compound vertically extends from the redistribution structure to laterally surround the one or more conductive layers.
Abstract:
Structures and formation methods of a chip package are provided. The chip package includes a chip stack including a number of semiconductor dies. The chip package also includes a semiconductor chip, and the semiconductor chip is higher than the chip stack. The chip package further includes a package layer covering a top and sidewalls of the chip stack and sidewalls of the semiconductor chip.
Abstract:
A semiconductor package and a method of forming a semiconductor package with one or more dies over an interposer are provided. In some embodiments, the semiconductor package has a plurality of through substrate vias (TSVs) extending through an interposer substrate. A redistribution structure is arranged over a first surface of the interposer substrate, and a first die is bonded to the redistribution structure. An edge of the first die is beyond a nearest edge of the interposer substrate. A second die is bonded to the redistribution structure. The second die is laterally separated from the first die by a space.
Abstract:
A package includes a chip that has a metal-insulator-metal (MIM) capacitor formed in a first polymer layer and a metallic pillar formed on the MIM capacitor. A molding compound surrounds the chip, a second polymer layer is formed on the chip and the molding compound, a third polymer layer is formed on the second polymer layer, an interconnect structure is formed between the second polymer layer and the third polymer layer and electrically coupled to the metallic pillar and the MIM capacitor, and a bump is formed over and electrically coupled to the interconnect structure.
Abstract:
An integrated circuit package and a method of forming the same are provided. The method includes attaching an integrated circuit die to a first substrate. A dummy die is formed. The dummy die is attached to the first substrate adjacent the integrated circuit die. An encapsulant is formed over the first substrate and surrounding the dummy die and the integrated circuit die. The encapsulant, the dummy die and the integrated circuit die are planarized, a topmost surface of the encapsulant being substantially level with a topmost surface of the dummy die and a topmost surface of the integrated circuit die. An interior portion of the dummy die is removed. A remaining portion of the dummy die forms an annular structure.
Abstract:
A structure including a photonic integrated circuit die, an electric integrated circuit die, a semiconductor dam, and an insulating encapsulant is provided. The photonic integrated circuit die includes an optical input/output portion and a groove located in proximity of the optical input/output portion, wherein the groove is adapted for lateral insertion of at least one optical fiber. The electric integrated circuit die is disposed over and electrically connected to the photonic integrated circuit die. The semiconductor dam is disposed over the photonic integrated circuit die. The insulating encapsulant is disposed over the photonic integrated circuit die and laterally encapsulates the electric integrated circuit die and the semiconductor dam.