Abstract:
A catalyst is imparted selectively to a plateable material portion 32 by performing a catalyst imparting processing on a substrate W having a non-plateable material portion 31 and the plateable material portion 32 formed on a surface thereof. Then, a hard mask layer 35 is formed selectively on the plateable material portion 32 by performing a plating processing on the substrate W. The non-plateable material portion 31 is made of SiO2 as a main component, and the plateable material portion 32 is made of a material including, as a main component, a material containing at least one of a OCHx group and a NHx group, a metal material containing Si as a main component, a material containing carbon as a main component or a catalyst metal material.
Abstract:
A substrate W having a non-plateable material portion 31 and a plateable material portion 32 formed on a surface thereof is prepared, and then, a catalyst is selectively imparted to the plateable material portion 32 by performing a catalyst imparting processing on the substrate W. Thereafter, a plating layer 35 is selectively formed on the plateable material portion 32 by supplying a plating liquid M1 onto the substrate W. The plating liquid M1 contains an inhibitor which suppresses the plating layer 35 from being precipitated on the non-plateable material portion 31.
Abstract:
A catalyst is imparted selectively to a plateable material portion 32 by performing a catalyst imparting processing on a substrate W having a non-plateable material portion 31 and the plateable material portion 32 formed on a surface thereof. Then, a hard mask layer 35 is formed selectively on the plateable material portion 32 by performing a plating processing on the substrate W. The non-plateable material portion 31 is made of SiO2 as a main component, and the plateable material portion 32 is made of a material including, as a main component, a material containing at least one of a OCHx group and a NHx group, a metal material containing Si as a main component, a material containing carbon as a main component or a catalyst metal material.
Abstract:
A plating method can improve adhesivity with an underlying layer. The plating method of performing a plating process on a substrate includes forming a first plating layer 23a serving as a barrier film on a substrate 2; baking the first plating layer 23a; forming a second plating layer 23b serving as a barrier film; and baking the second plating layer 23b. A plating layer stacked body 23 serving as a barrier film is formed of the first plating layer 23a and the second plating layer 23b.
Abstract:
An adhesion layer formed of a thin film can be formed on a surface of a substrate. An adhesion layer forming method of forming the adhesion layer on the substrate includes supplying a coupling agent onto the substrate 2 while rotating the substrate 2. The substrate 2 is rotated at a low speed equal to or less than 300 rpm and the coupling agent diluted with IPA is supplied onto the substrate 2.
Abstract:
A catalyst adsorbed on a surface of a substrate is bound to the substrate without leaving residues within a recess of the substrate. A catalyst layer forming method includes forming a catalyst layer 22 by supplying a catalyst solution 32 onto a substrate 2 having a recess 2a to adsorb the catalyst 22A onto a surface of the substrate and onto an inner surface of the recess; rinsing the surface of the substrate 2 and an inside of the recess 2a by supplying a rinse liquid; drying the surface of the substrate 2 and the inside of the recess 2a. Further, by supplying a binder solution 34 containing a binder 22B onto the substrate 2, the catalyst 22A on the surface of the substrate 2 is bound to the substrate 2 by the binder 22B.
Abstract:
A seed layer and a barrier layer located outside a wiring layer on a surface of a substrate are easily removed by an etching process. A metal layer 25 composed of the barrier layer 23 and the seed layer 24 is formed on a surface of the substrate 2 and on an inner surface of a recess 2a, and then, a resist pattern is formed on the metal layer. The wiring layer 27 is formed within the recess 2a by supplying a plating liquid from an opening 26a of the resist pattern 26, and then, the metal layer 25 on the surface of the substrate 2 is removed by the etching process. The metal layer 25 is formed by an electroless plating process.
Abstract:
A pre-treatment method of plating can suppress a catalyst layer from being peeled off from a substrate. The pre-treatment method of forming the catalyst layer on the substrate includes forming the catalyst layer 22 by adsorbing a catalyst 22a on the substrate 2; and forming a catalyst fixing layer 27 on the catalyst layer 22.
Abstract:
A plating method can improve uniformity in a thickness of a plating layer formed on an inner surface of a recess. The plating method includes a loading process of loading the substrate in which the recess is formed into a casing; and a plating process of supplying a plating liquid to the substrate and forming a plating layer having a specific function on an inner surface of the recess. The plating process includes a first plating process of supplying a first plating liquid to the substrate and forming a first plating layer; and a second plating process of supplying a second plating liquid to the substrate and forming a second plating layer on the first plating layer after the first plating process. Further, a concentration of an additive contained in the first plating liquid is different from a concentration of an additive contained in the second plating liquid.
Abstract:
Catalytic metal nanoparticles can be attached on a base. A pre-treatment method for plating includes a catalytic particle-containing film forming process of forming a catalytic particle-containing film on a surface of a substrate by supplying, onto the substrate, a catalytic particle solution which is prepared by dispersing the catalytic metal nanoparticles and a dispersing agent in a solvent containing water; a first heating process of removing moisture contained at least in the catalytic particle-containing film by heating the substrate to a first temperature; and a second heating process of polymerizing the dispersing agent to have a sheet shape by heating the substrate to a second temperature higher than the first temperature after the first heating process and fixing the catalytic metal nanoparticles on a base layer by covering the catalytic metal nanoparticles with the sheet-shaped dispersing agent.