HYBRID INTERGRATED COMPONENT AND METHOD FOR THE MANUFACTURE THEREOF
    21.
    发明申请
    HYBRID INTERGRATED COMPONENT AND METHOD FOR THE MANUFACTURE THEREOF 有权
    混合互联组件及其制造方法

    公开(公告)号:US20130299927A1

    公开(公告)日:2013-11-14

    申请号:US13888920

    申请日:2013-05-07

    Abstract: Measures are proposed by which the design freedom is significantly increased in the case of the implementation of the micromechanical structure of the MEMS element of a component, which includes a carrier for the MEMS element and a cap for the micromechanical structure of the MEMS element, the MEMS element being mounted on the carrier via a standoff structure. The MEMS element is implemented in a layered structure, and the micromechanical structure of the MEMS element extends over at least two functional layers of this layered structure, which are separated from one another by at least one intermediate layer.

    Abstract translation: 提出的措施是,在实现元件的MEMS元件的微机械结构的情况下,设计自由度显着增加,其包括用于MEMS元件的载体和用于MEMS元件的微机械结构的盖, MEMS元件通过支架结构安装在载体上。 MEMS元件以分层结构实现,并且MEMS元件的微机械结构在该分层结构的至少两个功能层上延伸,所述功能层通过至少一个中间层彼此分离。

    Controlling electromechanical behavior of structures within a microelectromechanical systems device
    24.
    发明授权
    Controlling electromechanical behavior of structures within a microelectromechanical systems device 失效
    控制微机电系统设备内结构的机电行为

    公开(公告)号:US08278726B2

    公开(公告)日:2012-10-02

    申请号:US12861778

    申请日:2010-08-23

    Abstract: In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.

    Abstract translation: 在一个实施例中,本发明提供一种用于制造微机电系统装置的方法。 该方法包括制造包括具有特征机电响应的膜的第一层和特征光学响应,其中特征光学响应是期望的,并且特征机电响应是不期望的; 以及通过在所述微机电系统装置的启动期间至少减少其上的电荷积累来修改所述第一层的特征机电响应。

    Micro-electro-mechanical systems (MEMS) device
    25.
    发明授权
    Micro-electro-mechanical systems (MEMS) device 有权
    微机电系统(MEMS)装置

    公开(公告)号:US08258591B2

    公开(公告)日:2012-09-04

    申请号:US12014810

    申请日:2008-01-16

    Abstract: The present invention provides a MEMS device, be implemented on many MEMS device, such as MEMS microphone, MEMS speaker, MEMS accelerometer, MEMS gyroscope. The MEMS device includes a substrate. A dielectric structural layer is disposed over the substrate, wherein the dielectric structural layer has an opening to expose the substrate. A diaphragm layer is disposed over the dielectric structural layer, wherein the diaphragm layer covers the opening of the dielectric structural layer to form a chamber. A conductive electrode structure is adapted in the diaphragm layer and the substrate to store nonvolatile charges.

    Abstract translation: 本发明提供了一种MEMS器件,可在诸如MEMS麦克风,MEMS扬声器,MEMS加速度计,MEMS陀螺仪的许多MEMS器件上实现。 MEMS器件包括衬底。 电介质结构层设置在衬底上,其中电介质结构层具有露出衬底的开口。 隔膜层设置在电介质结构层上,其中隔膜层覆盖电介质结构层的开口以形成室。 导电电极结构适用于隔膜层和基板以存储非易失性电荷。

    Microelectromechanical systems structures and self-aligned high aspect-ratio combined poly and single-crystal silicon fabrication processes for producing same
    26.
    发明授权
    Microelectromechanical systems structures and self-aligned high aspect-ratio combined poly and single-crystal silicon fabrication processes for producing same 有权
    微机电系统结构和自对准的高纵横比组合聚晶和单晶硅制造工艺

    公开(公告)号:US07977136B2

    公开(公告)日:2011-07-12

    申请号:US12319650

    申请日:2009-01-10

    Abstract: Disclosed are one-port and two-port microelectromechanical structures including variable capacitors, switches, and filter devices. High aspect-ratio micromachining is used to implement low-voltage, large value tunable and fixed capacitors, and the like. Tunable capacitors can move in the plane of the substrate by the application of DC voltages and achieve greater than 240 percent of tuning. Exemplary microelectromechanical apparatus comprises a single crystalline silicon substrate, and a conductive structure laterally separated from the single crystalline silicon substrate by first and second high aspect ratio gaps of different size, wherein at least one of the high aspect ratio gaps has an aspect ratio of at least 30:1, and is vertically anchored to the single crystalline silicon substrate by way of silicon nitride.

    Abstract translation: 公开了包括可变电容器,开关和滤波器装置的单端口和双端口微机电结构。 高纵横比微加工用于实现低电压,大值可调和固定电容器等。 可调电容器可以通过施加直流电压在基板的平面内移动,并实现大于240%的调谐。 示例性微电子机械装置包括单晶硅衬底和通过不同尺寸的第一和第二高纵横比间隙横向分离单晶硅衬底的导电结构,其中高纵横比间隙中的至少一个具有在 至少30:1,并且通过氮化硅垂直锚定到单晶硅衬底。

    LOW TEMPERATURE CERAMIC MICROELECTROMECHANICAL STRUCTURES
    28.
    发明申请
    LOW TEMPERATURE CERAMIC MICROELECTROMECHANICAL STRUCTURES 有权
    低温陶瓷微电子结构

    公开(公告)号:US20110111545A1

    公开(公告)日:2011-05-12

    申请号:US13003328

    申请日:2009-07-08

    Inventor: Mourad El-Gamal

    Abstract: A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience whilst also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.

    Abstract translation: 提供了一种提供与硅CMOS电子器件兼容的微机电结构(MEMS)的方法。 该方法提供了将MEMS制造的集成电路的最大曝光限制在低于350℃并可能低于250℃的工艺和制造顺序,从而允许将MEMS器件直接制造到电子器件上,例如 作为Si CMOS电路。 该方法进一步提供具有多个非导电结构层的MEMS器件,例如用小的侧向间隙分离的碳化硅。 这种碳化硅结构提供增强的材料性能,增加环境和化学弹性,同时还允许利用结构层的非导电材料来实现新颖的设计。 在形成MEMS元件(例如马达,齿轮,转子,平移驱动器等)中使用碳化硅是有益的,其中增加的硬度降低了操作期间这些元件的磨损。

    METHOD, APPARATUS AND PROGRAM FOR MANUFACTURING SILICON STRUCTURE
    29.
    发明申请
    METHOD, APPARATUS AND PROGRAM FOR MANUFACTURING SILICON STRUCTURE 有权
    方法,制造硅结构的装置和程序

    公开(公告)号:US20110097903A1

    公开(公告)日:2011-04-28

    申请号:US12997942

    申请日:2009-04-08

    Abstract: A method for manufacturing a silicon structure according to the present invention includes, in a so-called dry-etching process wherein gas-switching is employed, the steps of: etching a portion in the silicon region at a highest etching rate under a high-rate etching condition such that the portion does not reach the etch stop layer; subsequently etching under a transition etching condition in which an etching rate is decreased with time from the highest etching rate in the high-rate etching condition; and thereafter, etching the silicon region under a low-rate etching condition of a lowest etching rate in the transition etching condition.

    Abstract translation: 根据本发明的制造硅结构的方法包括:在所谓的干法蚀刻工艺中采用气体切换,其步骤为:以高蚀刻速率蚀刻硅区中的部分, 速率蚀刻条件使得该部分不到达蚀刻停止层; 随后在高速蚀刻条件下从最高蚀刻速率随着时间从而蚀刻速率降低的过渡蚀刻条件下进行蚀刻; 然后在转变蚀刻条件下以最低蚀刻速率的低速蚀刻条件蚀刻硅区域。

    Silicon-Rich Nitride Etch Stop Layer for Vapor HF Etching in MEMS Device Fabrication
    30.
    发明申请
    Silicon-Rich Nitride Etch Stop Layer for Vapor HF Etching in MEMS Device Fabrication 审中-公开
    富氮氮化物蚀刻停止层用于MEMS器件制造中的蒸气HF蚀刻

    公开(公告)号:US20100320548A1

    公开(公告)日:2010-12-23

    申请号:US12813117

    申请日:2010-06-10

    Abstract: A thin silicon-rich nitride film (e.g., having a thickness in the range of around 100A to 10000A) deposited using low-pressure chemical vapor deposition (LPCVD) is used for etch stop during vapor HF etching in various MEMS wafer fabrication processes and devices. The LPCVD silicon-rich nitride film may replace, or be used in combination with, a LPCVD stoichiometric nitride layer in many existing MEMS fabrication processes and devices. The LPCVD silicon-rich nitride film is deposited at high temperatures (e.g., typically around 650-900 degrees C.). Such a LPCVD silicon-rich nitride film generally has enhanced etch selectivity to vapor HF and other harsh chemical environments compared to stoichiometric silicon nitride and therefore a thinner layer typically can be used as an embedded etch stop layer in various MEMS wafer fabrication processes and devices and particularly for vapor HF etching processes, saving time and money in the fabrication process.

    Abstract translation: 使用低压化学气相沉积(LPCVD)沉积的薄的富硅氮化物膜(例如,厚度在约100A至10000A的范围内)用于各种MEMS晶片制造工艺和器件中的蒸气HF蚀刻期间的蚀刻停止 。 LPCVD富硅氮化物膜可以在许多现有的MEMS制造工艺和器件中替代或与其组合使用LPCVD化学计量氮化物层。 LPCVD富硅氮化物膜在高温(例如典型地约650-900℃)下沉积。 与化学计量的氮化硅相比,这种LPCVD富硅氮化物膜通常对蒸汽HF和其它恶劣的化学环境具有增强的蚀刻选择性,因此较薄的层通常可用作各种MEMS晶片制造工艺和器件中的嵌入式蚀刻停止层, 特别是对于蒸汽HF蚀刻工艺,节省了制造过程中的时间和金钱。

Patent Agency Ranking