Abstract:
Measures are proposed by which the design freedom is significantly increased in the case of the implementation of the micromechanical structure of the MEMS element of a component, which includes a carrier for the MEMS element and a cap for the micromechanical structure of the MEMS element, the MEMS element being mounted on the carrier via a standoff structure. The MEMS element is implemented in a layered structure, and the micromechanical structure of the MEMS element extends over at least two functional layers of this layered structure, which are separated from one another by at least one intermediate layer.
Abstract:
A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
Abstract:
The present disclosure provides an embodiment of a micro-electro-mechanical system (MEMS) structure, the MEMS structure comprising a MEMS substrate; a first and second conductive plugs of a semiconductor material disposed on the MEMS substrate, wherein the first conductive plug is configured for electrical interconnection and the second conductive plug is configured as an anti-stiction bump; a MEMS device configured on the MEMS substrate and electrically coupled with the first conductive plug; and a cap substrate bonded to the MEMS substrate such that the MEMS device is enclosed therebetween.
Abstract:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
Abstract:
The present invention provides a MEMS device, be implemented on many MEMS device, such as MEMS microphone, MEMS speaker, MEMS accelerometer, MEMS gyroscope. The MEMS device includes a substrate. A dielectric structural layer is disposed over the substrate, wherein the dielectric structural layer has an opening to expose the substrate. A diaphragm layer is disposed over the dielectric structural layer, wherein the diaphragm layer covers the opening of the dielectric structural layer to form a chamber. A conductive electrode structure is adapted in the diaphragm layer and the substrate to store nonvolatile charges.
Abstract:
Disclosed are one-port and two-port microelectromechanical structures including variable capacitors, switches, and filter devices. High aspect-ratio micromachining is used to implement low-voltage, large value tunable and fixed capacitors, and the like. Tunable capacitors can move in the plane of the substrate by the application of DC voltages and achieve greater than 240 percent of tuning. Exemplary microelectromechanical apparatus comprises a single crystalline silicon substrate, and a conductive structure laterally separated from the single crystalline silicon substrate by first and second high aspect ratio gaps of different size, wherein at least one of the high aspect ratio gaps has an aspect ratio of at least 30:1, and is vertically anchored to the single crystalline silicon substrate by way of silicon nitride.
Abstract:
An MEMS structure and a method of manufacturing the same are provided. The MEMS structure includes a substrate and at least one suspended microstructure located on the substrate. The suspended microstructure includes a plurality of metal layers, at least one dielectric layer, and at least one peripheral metal wall. The dielectric layer is sandwiched by the metal layers, and the peripheral metal wall is parallel to a thickness direction of the suspended microstructure and surrounds an edge of the dielectric layer.
Abstract:
A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience whilst also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.
Abstract:
A method for manufacturing a silicon structure according to the present invention includes, in a so-called dry-etching process wherein gas-switching is employed, the steps of: etching a portion in the silicon region at a highest etching rate under a high-rate etching condition such that the portion does not reach the etch stop layer; subsequently etching under a transition etching condition in which an etching rate is decreased with time from the highest etching rate in the high-rate etching condition; and thereafter, etching the silicon region under a low-rate etching condition of a lowest etching rate in the transition etching condition.
Abstract:
A thin silicon-rich nitride film (e.g., having a thickness in the range of around 100A to 10000A) deposited using low-pressure chemical vapor deposition (LPCVD) is used for etch stop during vapor HF etching in various MEMS wafer fabrication processes and devices. The LPCVD silicon-rich nitride film may replace, or be used in combination with, a LPCVD stoichiometric nitride layer in many existing MEMS fabrication processes and devices. The LPCVD silicon-rich nitride film is deposited at high temperatures (e.g., typically around 650-900 degrees C.). Such a LPCVD silicon-rich nitride film generally has enhanced etch selectivity to vapor HF and other harsh chemical environments compared to stoichiometric silicon nitride and therefore a thinner layer typically can be used as an embedded etch stop layer in various MEMS wafer fabrication processes and devices and particularly for vapor HF etching processes, saving time and money in the fabrication process.