摘要:
A nanowire molecular sensor, and a molecular detection system, comprising a nanowire waveguide (30), a nanowire sidewall (51) functionalized in order to attach a molecule (54), and light emissive point sources (52), wherein the amount of light emitted at an end (53) of the waveguide is dependent of the amount of specific molecules attached to the sidewall of the nanowire. A method employing said sensor may be used for single cell detection and analysis.
摘要:
System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device. One of multiple markers distinguishable by temporal parameters of the emission energy may label the sample and configuration of the sensor within a pixel may allow for detection of a temporal parameter associated with the marker labeling the sample.
摘要:
Arrays of integrated optical devices and their methods for production are provided. The devices include an integrated bandpass filter layer that comprises at least two multi-cavity filter elements with different central bandpass wavelengths. The device arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices provide for the efficient and reliable coupling of optical excitation energy from an optical source to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination. The device arrays are well suited for miniaturization and high throughput.
摘要:
The method and apparatus as shown in the present invention is to measure the absorption of light by material contained in a liquid. A transmitted signal is sent through a measurement window to a measurement chamber to a target point just inside the measurement window. The reflected signal indicates the amount of light absorbed by a material in the measurement chamber which allows for the amount of materials in a liquid to be determined. Adjustments are made through an optical block and a light control molecule to correct for variations in light intensity.
摘要:
Modular systems can be used for optical analysis, including in-situ analysis, of stimulated liquids. An excitation module can include a radiation sources, e.g., a laser, LED, lamp, etc. A detection module can include one or more detectors configured to receive spectral and/or temporal information from a stimulated liquid. Such systems can be used to identify or measure optical emissions including fluorescence or scattering. The efficient excitation of liquid samples and collection of emissions from the samples provides substantial, up to four-fold increase in the emission signal over prior systems. In an example, emission measurements can be conducted in an isolated sample compartment, such as using interchangeable modules for discrete sampling, flow-through sampling, or sampling via fiber probe. The systems and methods described herein can be used to characterize natural aquatic environments, including assessments of phytoplankton pigments, biomass, structure, physiology, organic matter, and oil pollution.
摘要:
In a microparticle measurement device, a sample is passed through each channel in a multi-flow channel, and a predetermined linear area is illuminated with light. Measurement light originating from a microparticle in the sample, such as scattered or fluorescent light, is shaped into a parallel beam by an objective lens and passes through a first and second transmission portions. The beams transmitted through these two portions are converged as first and second measurement beams onto the same straight line by a cylindrical lens. The intensity of the interference light formed by these beams is detected with a detector. Meanwhile, the light emitted from the light source and passing through the multi-flow channel without hitting the microparticle falls through the objective lens onto a non-reflection portion and does not travel toward the cylindrical lens. Accordingly, only the interference light formed by the measurement beams is allowed to fall onto the detector.
摘要:
The invention relates to a method and apparatus for measuring the optical state on the inside of a reaction vessel. The apparatus includes: linking portions that optically connect with the interior of the reaction vessel that is linkable with reaction vessels, a connecting end arranging body having an arranging surface that arranges and supports along a predetermined path, connecting ends to which is provided back ends of the light guide portions, the front ends thereof being provided to the linking portions, the connecting ends being provided to the linking portions; a measurement device having measuring ends that are successively optically connectable with the connecting ends, and in which light based on the optical state is receivable by optical connections between the connecting ends and the measuring ends; and a light guide switching mechanism that successively optically connects the connecting ends and the measuring ends.
摘要:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
摘要:
A microscope for high spatial resolution imaging a structure of interest in a sample comprising a substance having a first state with first spectral properties and a second state with second spectral properties, the microscope comprising: an objective-lens assembly, a wave front modulating optical device adapted to spatially vary an intensity of a transfer light beam, a probe detector arranged to detect an optical measurement signal from a portion of the substance in the second state and placed in an area of the transfer light beam with an intensity adapted not to transfer the substance between the first and second states said microscope comprising a phase contrast microscopy system which includes an intensity detector arranged to detect an intensity of an illuminating light beam after said illuminating light beam has passed through the sample, the objective-lens assembly and the wave front modulating optical device.
摘要:
An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.