Abstract:
A communications connector includes: a dielectric mounting substrate; at least four pairs of conductors mounted on the mounting substrate, each of the conductors including a free end segment, each of the free end segments being positioned in side-by-side and generally parallel relationship; and at least four pairs of terminals mounted on the mounting substrate, wherein each of the pairs of terminals is electrically connected to a respective pair of conductors. A first pair of conductor free end segments is immediately adjacent each other, a second pair of conductor free end segments is immediately adjacent each other and positioned one side of the first pair, a fourth pair of conductor free end segments is immediately adjacent each other and positioned on an opposite side of the first pair, and a third pair of conductor free end segments sandwiches the first pair, with one of the conductor free end segments of the third pair being disposed between the first and second pairs, and the other of the conductor free end segments being disposed between the first and fourth pairs. Each of the first, second and fourth pairs of conductors includes a crossover between the conductors of the pairs, and the third pair of conductors includes three crossovers between its conductors.
Abstract:
A method and apparatus for substantially reducing or eliminating electromagnetic and electrostatic coupling between signal traces on a substrate is disclosed. A substrate, such as a printed circuit board, is formed with an electrically insulative layer and a conductive layer. A portion of the conductive layer is removed to form circuit traces including signal traces and voltage reference traces configured such that each signal trace is separated from each other signal trace by at least one voltage reference trace. The invention is also applied to multiple layer printed circuit boards including a single voltage reference plane, an electronic system, and a semiconductor substrate. According to another aspect of the invention, a majority of a conductive layer is left on an insulative layer of a substrate by removing only those portions of the conductive layer immediately adjacent signal traces such that the remaining conductive material, which is ordinarily removed, acts to couple electromagnetic and electrostatic fields from the signal traces.
Abstract:
An electronic assembly is disclosed. The electronic assembly includes a lower portion and a first elongate trace formed on an upper surface of the lower portion. The trace is covered by an upper portion, and an opening formed through an upper surface of the upper portion extends to the trace to expose a portion of the trace. A second elongate trace is formed on the upper portion. A portion of the second elongate trace positioned in the opening formed through the upper surface of the upper portion contacts the first elongate trace through the opening to form an electrical interconnection between the first trace and the second trace.
Abstract:
A communications connector includes: a dielectric mounting substrate; at least four pairs of conductors mounted on the mounting substrate, each of the conductors including a free end segment, each of the free end segments being positioned in side-by-side and generally parallel relationship; and at least four pairs of terminals mounted on the mounting substrate, wherein each of the pairs of terminals is electrically connected to a respective pair of conductors. A first pair of conductor free end segments is immediately adjacent each other, a second pair of conductor free end segments is immediately adjacent each other and positioned one side of the first pair, a fourth pair of conductor free end segments is immediately adjacent each other and positioned on an opposite side of the first pair, and a third pair of conductor free end segments sandwiches the first pair, with one of the conductor free end segments of the third pair being disposed between the first and second pairs, and the other of the conductor free end segments being disposed between the first and fourth pairs. Each of the first, second and fourth pairs of conductors includes a crossover between the conductors of the pairs, and the third pair of conductors includes three crossovers between its conductors.
Abstract:
An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes a flexible printed circuit board connected to jack contacts and to connections to a network cable. The flexible printed circuit board includes conductive traces arranged as one or more couplings to provide crosstalk compensation.
Abstract:
A symmetric electrical connection system for balancing impedance between a first node and a third node and impedance between a second node and a fourth node. The system includes a first conducting wire, a third conducting wire, a fifth conducting wire, and a seventh conducting wire all installed in a first layer. The system further includes a second conducting wire, a fourth conducting wire, a sixth conducting wire, and an eighth conducting wire all installed in a second layer. The first conducting wire and the eighth conducting wire are crossed but electrically insulated. The second conducting wire and the third conducting wire are crossed but electrically insulated. The fourth conducting wire and the fifth conducting wire are crossed but electrically insulated. The sixth conducting wire and the seventh conducting wire are crossed but electrically insulated. In a preferred embodiment, the appearances and the materials of the conducting wires are essentially equivalent.
Abstract:
Single-sided conductor patterned films are prepared, each of which has a conductor pattern formed only one side of a resin film and via hole filled with conductive paste. A single-sided conductor patterned film which has a conductor pattern formed only one side of a resin film and an opening formed in the resin film so as to expose an electrode is laminated on the single-sided conductor patterned films. Moreover, a cover layer with an opening to expose an electrode is laminated on a bottom surface of the single-sided conductor patterned films to form a laminate. Then, by pressing while heating the laminate, a multilayer substrate having the electrodes at both sides thereof can be produced.
Abstract:
An audio amplifier output stage layout technique achieves minimum cross coupling between audio amplifier channels. Regarding TDAA output stages, the typical TDAA includes two demodulation inductors per audio channel. The two pair of demodulation inductors associated with the TDAA are arranged to form an X-pattern to simultaneously minimize cross coupling between audio amplifier channels and reduce PCB layout size.
Abstract:
A high density electronics assembly which is highly modular in nature, thereby allowing a user to configure the assembly as desired for particular applications. The assembly also advantageously utilizes electronics inserts that are standardized across varying configurations, thereby obviating the need for different inserts for different applications. In one exemplary embodiment, the assembly comprises a low-profile Digital Subscriber Line (DSL) splitter apparatus, having a plurality of splitter circuits disposed within a housing structure in high density. Methods for manufacturing and configuring the assembly are also disclosed.
Abstract:
A printed circuit board (1) includes a plane substrate (10) having several insulated layers (11, 12, 13) used to dispose with conductive material. A row of footprints (2) used to connect to other electrical devices is disposed on an outer insulated layer (11) of the printed circuit board (1). These footprints (2) are paired and each is connected to a medial trace (5) formed on one of the intermediate layers (12) by a metalized hole (14). And the medial traces (C1, C1null) respectively connected to footprints (2) of the same pair (T1, R1) are formed on different intermediate layers (12) and aligned with each other for a predetermined distance. At least two traces (C3, C3null) connected to the chosen pair (T3, R3) are detoured to pass through a corresponding area aligned with the footprints (2) of their adjacent pair (T2, R2) mounted on the upper face (11) and are formed a corresponding footprint (R3null, T3null) over there respectively, so that the corresponding footprint (R3null, T3null) can be coupled with the footprints (T3, R3) to improve the noised signals received by the chosen pair (T3, R3) and its adjacent pair (T2, R2).