Abstract:
Described are on-die termination (ODT) systems and methods that facilitate high-speed communication between a driver die and a receiver die interconnected via one or more signal transmission lines. An ODT control system in accordance with one embodiment calibrates and maintains termination resistances and drive currents to produce optimal output swing voltages. Comparison circuitry employed to calibrate the reference resistance is also used to calibrate the drive current. Termination elements in some embodiments are divided into two adjustable resistive portions, both of which are designed to minimize capacitive loading. One portion is optimized to produce a relatively high range of adjustment, while the other is optimized for fine-tuning and glitch-free switching.
Abstract:
A memory device includes an array of resistive memory cells wherein each pair of resistive memory cells includes a first switching element electrically coupled in series to a first resistive memory element and a second switching element electrically coupled in series to a second resistive memory element. A source of the first switching element and a source of the second switching element receive a common source line signal.
Abstract:
An integrated circuit (IC) memory controller is disclosed. The memory controller includes a receiver to receive a strobe signal and provide an internal strobe signal. An adjustable delay circuit delays an enable signal to generate a delayed enable signal. A gate circuit generates a gated strobe signal using the delayed enable signal that masks transitions of the internal strobe signal that occur prior to a valid region of the internal strobe signal. A sample circuit samples data using the gated strobe signal.
Abstract:
A source-synchronous communication system in which a first integrated circuit (IC) conveys a data signal and concomitant strobe signal to a second IC. One or both ICs support hysteresis for the strobe channel that allows the second IC to distinguish between strobe preambles and noise, and thus prevent the false triggering of data capture. Hysteresis may also be employed to quickly settle the strobe channel to an inactive level after receipt of a strobe postamble.
Abstract:
Local on-die termination controllers for effecting termination of a high-speed signaling links simultaneously engage on-die termination structures within multiple integrated-circuit memory devices disposed on the same memory module, and/or within the same integrated-circuit package, and coupled to the high-speed signaling link. A termination control bus is coupled to memory devices on a module, and provides for peer-to-peer communication of termination control signals.
Abstract:
An embodiment is directed to an integrated circuit device having programmable input capacitance. For example, a programmable register of a memory device may store a value representative of an adjustment to the input capacitance value of a control pin. An embodiment is directed to controlling the skew of a synchronous memory system by allowing programmability of the lighter loaded pins in order to increase their load to match the more heavily loaded pins. By matching lighter loaded pins to more heavily loaded pins, the system exhibits improved synchronization of propagation delays of the control and address pins. In addition, an embodiment provides the ability to vary the loading depending on how many ranks are on the device.
Abstract:
A memory component includes a memory core comprising dynamic random access memory (DRAM) storage cells and a first circuit to receive external commands. The external commands include a read command that specifies transmitting data accessed from the memory core. The memory component also includes a second circuit to transmit data onto an external bus in response to a read command and pattern register circuitry operable during calibration to provide at least a first data pattern and a second data pattern. During the calibration, a selected one of the first data pattern and the second data pattern is transmitted by the second circuit onto the external bus in response to a read command received during the calibration. Further, at least one of the first and second data patterns is written to the pattern register circuitry in response to a write command received during the calibration.
Abstract:
The disclosed embodiments relate to components of a memory system that support timing-drift calibration. In specific embodiments, this memory system contains a memory device (or multiple devices) which includes a clock distribution circuit and an oscillator circuit which can generate a frequency, wherein a change in the frequency is indicative of a timing drift of the clock distribution circuit. The memory device also includes a measurement circuit which is configured to measure the frequency of the oscillator circuit. Additionally, the memory system contains a memory controller which can transmit a request to the memory device to trigger the memory device to measure the frequency of the oscillator circuit. The memory controller is also configured to receive the measured frequency from the memory device and uses the measured frequency to determine the timing drift in the memory device.
Abstract:
A method and apparatus for evaluating and optimizing a signaling system is described. A pattern of test information is generated in a transmit circuit of the system and is transmitted to a receive circuit. A similar pattern of information is generated in the receive circuit and used as a reference. The receive circuit compares the patterns. Any differences between the patterns are observable. In one embodiment, a linear feedback shift register (LFSR) is implemented to produce patterns. An embodiment of the present disclosure may be practiced with various types of signaling systems, including those with single-ended signals and those with differential signals. An embodiment of the present disclosure may be applied to systems communicating a single bit of information on a single conductor at a given time and to systems communicating multiple bits of information on a single conductor simultaneously.
Abstract:
Pixel circuits in an image sensor are sampled repetitively during an image frame period. At each sampling, a signal indicative of the photocharge integrated by a pixel circuit since last reset is compared to a threshold. If the integrated photocharge signal has not reached the threshold, the pixel circuit is permitted to continue integrating photocharge. If the integrated photocharge signal has reached the threshold, the pixel circuit is reset to remove integrated photocharge and photocharge integration for that pixel circuit is restarted. A corresponding pixel circuit value is recorded for the reset pixel circuit.