Abstract:
A power semiconductor module arrangement includes a circuit carrier including an electrically insulating substrate and an upper metallization layer disposed on upper side of the electrically insulating substrate, and a plurality of power stage inlays that each include first and second transistor dies and a driver die configured to control switching of the first and second transistor dies. Each of the power stage inlays are modular units comprising terminals that are electrically connected to the first and second transistor dies and the driver die. Each of the power stage inlays is embedded within the electrically insulating substrate. The upper metallization layer comprises conductive connectors that extend over the power stage inlays and connect with the terminals of the terminals of each of the power stage inlays.
Abstract:
A package and method of manufacturing a package is disclosed. In one example, the method comprises mounting at least one electronic component on a carrier, attaching a laminate body to the mounted at least one electronic component, and filling at least part of spaces between the laminate body and the carrier with mounted at least one electronic component with an encapsulant.
Abstract:
A package and method of making a package is disclosed. In one example, the package includes an electronic chip having at least one pad, an encapsulant at least partially encapsulating the electronic chip, and an electrically conductive contact element extending from the at least one pad and through the encapsulant so as to be exposed with respect to the encapsulant. The electrically conductive contact element comprises a first contact structure made of a first electrically conductive material on the at least one pad and comprises a second contact structure made of a second electrically conductive material and being exposed with respect to the encapsulant. At least one of the at least one pad has at least a surface portion which comprises or is made of the first electrically conductive material.
Abstract:
A semiconductor module includes a circuit board and a power semiconductor chip embedded in the circuit board. The power semiconductor chip has a first load electrode. The semiconductor module further includes a power terminal connector electrically connected to the first load electrode. The embedded power semiconductor chip is positioned laterally within a footprint zone of the power terminal connector.
Abstract:
A chip package is provided, the chip package including: a chip carrier; a chip disposed over and electrically connected to a chip carrier top side; an electrically insulating material disposed over and at least partially surrounding the chip; one or more electrically conductive contact regions formed over the electrically insulating material and in electrical connection with the chip; a further electrically insulating material disposed over a chip carrier bottom side; wherein an electrically conductive contact region on the chip carrier bottom side is released from the further electrically insulating material.
Abstract:
A semiconductor package includes a first semiconductor module including a plurality of semiconductor transistor chips and a first encapsulation layer disposed above the semiconductor transistor chips, and a second semiconductor module disposed above the first semiconductor module. The second semiconductor module includes a plurality of semiconductor driver channels and a second encapsulation layer disposed above the semiconductor driver channels. The semiconductor driver channels are configured to drive the semiconductor transistor chips.
Abstract:
A chip arrangement includes semiconductor chips coupled to opposing sides of an insulating layer. The arrangement includes a first semiconductor chip having a first chip surface presenting a first chip conductive region. An electrically insulating layer includes a first layer surface presenting a first layer conductive region, and a second, opposing surface presenting a second layer conductive region. The electrically insulating layer is coupled to the first semiconductor chip by applying the first layer conductive region to the first chip conductive region. The electrically insulating layer is then coupled to the second chip conductive region by applying the second layer conductive region to the second chip conductive region.