Abstract:
A semiconductor structure with low resistance conduction paths and methods of manufacture are disclosed. The method includes forming at least one low resistance conduction path on a wafer, and forming an electroplated seed layer in direct contact with the low resistance conduction path.
Abstract:
Structures and methods of making a dielectric region in a bulk silicon (Si) substrate of a mixed-signal integrated circuit (IC) provide a high-Q passive resonator. Deep trenches within the bulk Si substrate in directions are expanded by wet etching to form contiguous cavities, which are filled by Si oxide to form a dielectric region. The dielectric region enhances the quality (Q) of an overlying passive resonator, formed in metallization layers of the mixed-signal IC.
Abstract:
Various embodiments include interconnect structures and methods of forming such structures. The interconnect structures can include a composite copper wire which includes at least two distinct copper sections. The uppermost copper section can have a thickness of approximately 1 micrometer or less, which inhibits surface roughening in that uppermost section, and helps to enhance cap adhesion with overlying layers.
Abstract:
A structure and method for fabricating the structure that provides a metal wire having a first height at an upper surface. An insulating material surrounding said metal wire is etched to a second height below said first height of said upper surface. The metal wire from said upper surface, after etching said insulating material, is planarized to remove sufficient material from a lateral edge portion of said metal wire such that a height of said lateral edge portion is equivalent to said second height of said insulating material surrounding said metal wire.
Abstract:
A semiconductor structure with low resistance conduction paths and methods of manufacture are disclosed. The method includes forming at least one low resistance conduction path on a wafer, and forming an electroplated seed layer in direct contact with the low resistance conduction path.
Abstract:
A semiconductor structure with low resistance conduction paths and methods of manufacture are disclosed. The method includes forming at least one low resistance conduction path on a wafer, and forming an electroplated seed layer in direct contact with the low resistance conduction path.
Abstract:
Structures and methods of making a dielectric region in a bulk silicon (Si) substrate of a mixed-signal integrated circuit (IC) provide a high-Q passive resonator. Deep trenches within the bulk Si substrate in directions are expanded by wet etching to form contiguous cavities, which are filled by Si oxide to form a dielectric region. The dielectric region enhances the quality (Q) of an overlying passive resonator, formed in metallization layers of the mixed-signal IC.
Abstract:
Disclosed are methods for forming a thin film resistor and terminal bond pad simultaneously. A method includes simultaneously forming a terminal bond pad on a terminal wire and a thin film resistor on two other wires.
Abstract:
Approaches for fabricating copper wires in integrated circuits are provided. A method of manufacturing a semiconductor structure includes forming a wire opening in a mask. The method also includes electroplating a conductive material in the wire opening. The method additionally includes forming a cap layer on the conductive material. The method further includes removing the mask. The method still further includes forming spacers on sides of the conductive material. The method additionally includes forming a dielectric film on surfaces of the cap layer and the sidewall spacers.
Abstract:
A through silicon via (TSV), method and 3D integrated circuit are disclosed. The TSV extends through a substrate to a back side of the substrate and includes a body including a first metal for coupling to an interconnect on a front side of the substrate. A dielectric collar insulates the body from the substrate. The TSV also includes an end cap coupled to the body on the back side of the substrate, the end cap including a second metal that is different than the first metal. The end cap acts as a grinding stop indicator during back side grinding for 3D integration processing, preventing damage to the dielectric collar and first metal (e.g., copper) contamination of the substrate.