摘要:
An (Al, Ga, In)N light emitting diode (LED) in which multi-directional light can be extracted from one or more surfaces of the LED before entering a shaped optical element and subsequently being extracted to air. In particular, the (Al, Ga, In)N and transparent contact layers (such as ITO or ZnO) are embedded in or combined with a shaped optical element comprising an epoxy, glass, silicon or other material molded into an inverted cone shape, wherein most of the light entering the inverted cone shape lies within a critical angle and is extracted. In addition, the present invention stands the LED on end, i.e., rotates the position of the LED within the shaped optical element by approximately 90° as compared to a conventional LED, in order to extract light more effectively from the LED. The present invention also minimizes internal reflections within the LED by eliminating mirrors and/or mirrored surfaces, in order to minimize re-absorption of the LED's light by the emitting layer (or the active layer) of the LED. To assist in minimizing internal reflections, transparent electrodes, such as ITO or ZnO, may be used. Surface roughening by patterning or anisotropically etching (i.e., creating microcones) may also assist in light extraction, as well as minimizing internal reflections.
摘要:
A lighting apparatus for emitting polarized white light, which includes at least a first light source for emitting primary light comprised of one or more first wavelengths and having a first polarization direction; and at least a second light source for emitting secondary light in the first polarization direction, comprised of one or more secondary wavelengths, wherein the first light and the secondary light are combined to produce a polarized white light. The lighting apparatus may further comprise a polarizer for controlling the primary light's intensity, wherein a rotation of the polarizer varies an alignment of its polarization axis with respect to the first polarization direction, which varies transmission of the primary light through the polarizer, which controls a color co-ordinate or hue of the white light.
摘要:
A method for growing an improved quality nitride thin film on a patterned substrate is disclosed, wherein the nitride film is grown at atmospheric pressure. A nitride template is disclosed, comprising a patterned substrate and a one or more nitride layer direct growth off of the patterned substrate, comprising no lateral epitaxial overgrowth regions and a substantially coalesced surface smooth enough for subsequent deposition of light emitting device quality nitride layers onto the surface. A light emitting diode comprising the nitride film is also disclosed.
摘要:
A lead frame for a transparent and mirrorless light emitting diode (LED). The LED is comprised of a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers. A lead frame supports the III-nitride layers, wherein the III-nitride layers reside on a transparent plate in the lead frame, and the light emitted from the III-nitride layers is transmitted through the transparent plate. A metal mask may be formed on the transparent plate for electrically connecting the III-nitride layers to a lead frame.
摘要:
This invention is related to LED Light Extraction for optoelectronic applications. More particularly the invention relates to (Al, Ga, In)N combined with optimized optics and phosphor layer for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. A further extension is the general combination of a shaped high refractive index light extraction material combined with a shaped optical element.
摘要:
A method of growing planar non-polar m-plane III-Nitride material, such as an m-plane gallium nitride (GaN) epitaxial layer, wherein the III-Nitride material is grown on a suitable substrate, such as an m-plane silicon carbide (m-SiC) substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer such as an aluminum nitride (AlN) on the annealed substrate, and growing the non-polar m-plane III-Nitride epitaxial layer on the nucleation layer using MOCVD.
摘要:
A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface. The planar films and substrates are: (1) {10 11} gallium nitride (GaN) grown on a {100} spinel substrate miscut in specific directions, (2) {10 13} gallium nitride (GaN) grown on a {110} spinel substrate, (3) {11 22} gallium nitride (GaN) grown on a {1 100} sapphire substrate, and (4) {10 13} gallium nitride (GaN) grown on a {1 100} sapphire substrate.
摘要:
A nonpolar III-nitride film grown on a miscut angle of a substrate. The miscut angle towards the direction is 0.75° or greater miscut and less than 27° miscut towards the direction. Surface undulations are suppressed and may comprise faceted pyramids. A device fabricated using the film is also disclosed. A nonpolar III-nitride film having a smooth surface morphology fabricated using a method comprising selecting a miscut angle of a substrate upon which the nonpolar III-nitride films are grown in order to suppress surface undulations of the nonpolar III-nitride films. A nonpolar III-nitride-based device grown on a film having a smooth surface morphology grown on a miscut angle of a substrate which the nonpolar III-nitride films are grown. The miscut angle may also be selected to achieve long wavelength light emission from the nonpolar film.
摘要:
A method for fabricating AlxGa1-xN-cladding-free nonpolar III-nitride based laser diodes or light emitting diodes. Due to the absence of polarization fields in the nonpolar crystal planes, these nonpolar devices have thick quantum wells that function as an optical waveguide to effectively confine the optical mode to the active region and eliminate the need for Al-containing waveguide cladding layers.
摘要翻译:一种制造Al x Ga 1-x N不包覆非极性III族氮化物基激光二极管或发光二极管的方法。 由于在非极性晶面中没有极化场,这些非极性器件具有用作光波导的厚量子阱,以有效地将光学模式限制在有源区,并且不需要含Al波导覆层。
摘要:
A method of growing non-polar m-plane III-nitride film, such as GaN, AlN, AlGaN or InGaN, wherein the non-polar m-plane III-nitride film is grown on a suitable substrate, such as an m-SiC, m-GaN, LiGaO2 or LiAlO2 substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer, such as aluminum nitride (AlN), on the annealed substrate, and growing the non-polar m-plane III-nitride film on the nucleation layer using MOCVD.