摘要:
A method of fabricating transferable semiconductor devices includes providing a release layer including indium aluminum phosphide on a substrate, and providing a support layer on the release layer. The support layer and the substrate include respective materials, such as arsenide-based materials, such that the release layer has an etching selectivity relative to the support layer and the substrate. At least one device layer is provided on the support layer. The release layer is selectively etched without substantially etching the support layer and the substrate. Related structures and methods are also discussed.
摘要:
An active component array includes a target substrate having one or more contacts formed on a side of the target substrate, and one or more printable active components distributed over the target substrate. Each active component includes an active layer having a top side and an opposing bottom side and one or more active element(s) formed on or in the top side of the active layer. The active element(s) are electrically connected to the contact(s), and the bottom side is adhered to the target substrate. Related fabrication methods are also discussed.
摘要:
A method of printing transferable components includes pressing a stamp including at least one transferable semiconductor component thereon on a target substrate such that the at least one transferable component and a surface of the target substrate contact opposite surfaces of a conductive eutectic layer. During pressing of the stamp on the target substrate, the at least one transferable component is exposed to electromagnetic radiation that is directed through the transfer stamp to reflow the eutectic layer. The stamp is then separated from the target substrate to delaminate the at least one transferable component from the stamp and print the at least one transferable component onto the surface of the target substrate. Related systems and methods are also discussed.
摘要:
The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of ‘soft adhesion’ to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.
摘要:
The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions and including relief and recess features with variable height, depth or height and depth. Composite patterning devices comprising a plurality of polymer layers each having selected mechanical and thermal properties and physical dimensions provide high resolution patterning on a variety of substrate surfaces and surface morphologies. Gray-scale ink lithography photomasks for gray-scale pattern generation or molds for generating embossed relief features on a substrate surface are provided. The particular shape of the fabricated patterned can be manipulated by varying the three-dimensional recess pattern on an elastomeric patterning device which is brought into conformal contact with a substrate to localize patterning agent to the recess portion of the pattern.
摘要:
The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.
摘要:
In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.
摘要:
A large-format substrate with distributed control elements is formed by providing a substrate and a wafer, the wafer having a plurality of separate, independent chiplets formed thereon; imaging the wafer and analyzing the wafer image to determine which of the chiplets are defective; removing the defective chiplet(s) from the wafer leaving remaining chiplets in place on the wafer; printing the remaining chiplet(s) onto the substrate forming empty chiplet location(s); and printing additional chiplet(s) from the same or a different wafer into the empty chiplet location(s).
摘要:
A large-format substrate with distributed control elements is formed by providing a substrate and a wafer, the wafer having a plurality of separate, independent chiplets formed thereon; imaging the wafer and analyzing the wafer image to determine which of the chiplets are defective; removing the defective chiplet(s) from the wafer leaving remaining chiplets in place on the wafer; printing the remaining chiplet(s) onto the substrate forming empty chiplet location(s); and printing additional chiplet(s) from the same or a different wafer into the empty chiplet location(s).
摘要:
Provided are reinforced composite stamps, devices and methods of making the reinforced composite stamps disclosed herein. Reinforced composite stamps of certain aspects of the present invention have a composition and architecture optimized for use in printing systems for dry transfer printing of semiconductor structures, and impart excellent control over relative spatial placement accuracy of the semiconductor structures being transferred. In some embodiments, for example, reinforced composite stamps of the present invention allow for precise and repeatable vertical motion of the patterned surface of the printing apparatus with self-leveling of the stamp to the surface of a contacted substrate. Reinforced composite stamps of certain aspect of the present invention achieve a uniform distribution of contact forces between the printing apparatus patterned surface and the top surface of a substrate being contacted by the reinforced composite stamp of the printing apparatus.