摘要:
A semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
摘要:
A resist formulation minimizes blistering during reactive ion etching processes resulting in an increased amount of polymer by-product deposition. Such processes involve exciting a gaseous fluorocarbon etchant with sufficient energy to form a high-density plasma, and the use of an etchant having a carbon-to-fluorine ratio of at least 0.33. In addition to a conventional photoactive component, resists which minimize blistering under these conditions include a resin binder which is a terpolymer having: (a) units that contain acid-labile groups; (b) units that are free of reactive groups and hydroxyl groups; and (c) units that contribute to aqueous developability of the photoresist. After the photoresist is patterned on the silicon oxide layer and the high-density plasma is formed, the high-density plasma is introduced to the silicon oxide layer to etch at least one opening in the silicon oxide layer. Preferably, the terpolymer is made up of about 70% 4-hydroxystyrene, about 20% styrene, and about 10% t-butylacrylate.
摘要:
The present invention includes a method and system to increase the deep trench sidewall surface area in a storage node on a DRAM chip. By tilting the trenches the capacitance is increased without taking up more space on the semiconductor chip.
摘要:
A method for increasing chip yield by reducing black silicon deposition in accordance with the present invention includes the steps of providing a silicon wafer suitable for fabricating semiconductor chips, depositing a first layer over an entire surface of the wafer, removing a portion of the first layer to expose a region suitable for forming semiconductor devices and etching the wafer such that a remaining portion of the first layer prevents redeposition of etched material on the wafer. A semiconductor assembly for reducing black silicon deposition thereon, includes a silicon wafer suitable for fabricating semiconductor chips, the wafer having a front surface for forming semiconductor devices, a back surface and edges. A deposited layer is formed on the wafer for covering the back surface and the edges such that redeposition of silicon on the back surface and edges of the wafer during etching is prevented.
摘要:
A fabrication process includes a step of providing a substrate to be fabricated. A multi-layer antireflective layer is then formed on the substrate. A patterned resist having a thickness less than 850 nanometers is formed on the multi-layer antireflective layer and the substrate is fabricated using the patterned resist as a mask.
摘要:
A simplified method of fabricating a storage node for a deep trench-based DRAM on a semiconductor substrate. The method involves the etching a trench in a surface of the substrate and then forming a layer of dielectric material on a sidewall of the trench the top portion of which is subsequently removed from the sidewall. Next, a layer of oxide is grown on the exposed portion of the sidewall. A portion of this layer of oxide is then removed from the sidewall in order to orient the layer of oxide a predetermined distance from the surface of the substrate. Finally, the trench is filled with a semiconductive material.
摘要:
Silicon integrated circuits use a crystalline layer of silicon nitride (Si.sub.3 N.sub.4) in shallow trench isolation (STI) structures as an O.sub.2 -barrier film. The crystalline Si.sub.3 N.sub.4 lowers the density of electron traps as compared with as-deposited, amorphous Si.sub.3 N.sub.4. Further, a larger range of low-pressure chemical-vapor deposited (LPCVD) Si.sub.3 N.sub.4 films can be deposited, providing a larger processing window for thickness controllability. An LPCVD-Si.sub.3 N.sub.4 film is deposited at temperatures of 720.degree. C. to 780.degree. C. The deposited film is in an amorphous state. Subsequently, a high-temperatures rapid-thermal anneal in pure nitrogen or ammonia is conducted at 1050.degree. C. to 1100.degree. C. for 60 seconds.
摘要翻译:硅集成电路在浅沟槽隔离(STI)结构中使用氮化硅(Si 3 N 4)的结晶层作为O 2阻挡膜。 与沉积的非晶Si3N4相比,晶体Si3N4降低了电子阱的密度。 此外,可以沉积更大范围的低压化学气相沉积(LPCVD)Si 3 N 4膜,为厚度可控性提供更大的处理窗口。 在720℃至780℃的温度下沉积LPCVD-Si 3 N 4膜。沉积膜处于非晶状态。 随后,在1050℃至1100℃下进行纯氮或氨的高温快速热退火60秒。
摘要:
A plasma enhanced chemical vapor deposition process for producing a fluorinated silicon nitride layer on a substrate is disclosed. The process utilizes a mixture of silane, perfluorosilane and nitrogen to produce films of high conformality and stability. The silane and perfluorosilane in the mixture are in a ratio of 0.05 to 1 on a volume basis. The preferred silane is SiH.sub.4 and the preferred perfluorosilane is SiF.sub.4.
摘要:
A semiconductor memory device and a design structure including the semiconductor memory device embodied in a machine readable medium is provided. In particular the present invention includes a semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
摘要:
A method of etching semiconductor structures is disclosed. The method may include etching an SRAM portion of a semiconductor device, the method comprising: providing a silicon substrate layer, a nitride layer thereover, an optical dispersive layer over the nitride layer, and a silicon anti-reflective coating layer thereover; etching the silicon anti-reflective coating layer using an image layer; removing the image layer; etching the optical dispersive layer while removing the silicon anti-reflective coating layer; etching the optical dispersive layer and the nitride layer simultaneously; and etching the optical dispersive layer, the nitride layer, and the silicon substrate simultaneously.