Abstract:
Some embodiments include methods of forming semiconductor constructions. A heavily-doped region is formed within a first semiconductor material, and a second semiconductor material is epitaxially grown over the first semiconductor material. The second semiconductor material is patterned to form circuit components, and the heavily-doped region is patterned to form spaced-apart buried lines electrically coupling pluralities of the circuit components to one another. At least some of the patterning of the heavily-doped region occurs simultaneously with at least some of the patterning of the second semiconductor material.
Abstract:
Some embodiments include memory arrays. The memory arrays may have digit lines under vertically-oriented transistors, with the digit lines interconnecting transistors along columns of the array. Each individual transistor may be directly over only a single digit line, with the single digit line being entirely composed of one or more metal-containing materials. The digit lines can be over a deck, and electrically insulative regions can be directly between the digit lines and the deck. Some embodiments include methods of forming memory arrays. A plurality of linear segments of silicon-containing material may be formed to extend upwardly from a base of the silicon-containing material. The base may be etched to form silicon-containing footings under the linear segments, and the footings may be converted into metal silicide. The linear segments may be patterned into a plurality of vertically-oriented transistor pedestals that extend upwardly from the metal silicide footings.
Abstract:
Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
Abstract:
A semiconductor device including a substrate; a plurality of active regions that are disposed on the substrate and that are parallelly aligned; a plurality of first type of trench isolations having a first top critical dimension (CD), each of the plurality of the first type of trench isolations including sidewalls that taper towards one another along a depth direction; and a plurality of second type of trench isolations having a second top CD, the second top CD being larger than the first top CD and each of the plurality of the second type of trench isolations having a flat bottom trench surface.
Abstract:
Semiconductor devices including self-aligned vertical connectors are disclosed herein. The self-aligned vertical connectors may have upper and lower portions that are concentric or have fixed relative positions across the connectors. The concentric or fixed relative positions may be aligned with a corresponding circuit or a bit line based on forming a conformal depression by depositing a controlled amount of conformal layer that fills wells adjacent to the bit line at a target location of the vertical connector. The vertical connector can be formed using the conformal depression, which may be self-aligned relative to the bit line as a result of filling the wells with the controlled amount of the conformal layer.
Abstract:
An electronic device comprising a cell region comprising stacks of alternating dielectric materials and conductive materials. A pillar region is adjacent to the cell region and comprises storage node segments adjacent to adjoining oxide materials and adjacent to a tunnel region. The storage node segments are separated by a vertical portion of the tunnel region. A high-k dielectric material is adjacent to the conductive materials of the cell region and to the adjoining oxide materials of the pillar region. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
Abstract:
Some embodiments include an integrated assembly having a stack of alternating first and second levels. A panel extends through the stack. The first levels have proximal regions adjacent the panel, and have distal regions further from the panel than the proximal regions. The distal regions have first conductive structures, and the proximal regions have second conductive structures. Detectable interfaces are present where the first conductive structures join to the second conductive structures. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include an integrated assembly having a stack of alternating insulative levels and conductive levels. A pillar of channel material extends through the stack. The conductive levels have terminal regions adjacent the pillar. Charge-storage-material-segments are adjacent the conductive levels of the stack, and are between the channel material and the terminal regions. Tunneling material is between the charge-storage-material-segments and the channel material. Charge-blocking-material is between the charge-storage-material-segments and the terminal regions. Ribbons of dielectric material extend vertically across the insulative levels and are laterally inset relative to the terminal regions. The ribbons have first regions adjacent the conductive levels and have second regions between the first regions, with the second regions being laterally inset relative to the first regions. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include terminal regions, and include nonterminal regions proximate the terminal regions. The terminal regions are vertically thicker than the nonterminal regions, and are configured as segments which are vertically stacked one atop another and which are vertically spaced from one another. Blocks are adjacent to the segments and have approximately a same vertical thickness as the segments. The blocks include high-k dielectric material, charge-blocking material and charge-storage material. Channel material extends vertically along the stack and is adjacent to the blocks. Some embodiments include integrated assemblies. Some embodiments include methods of forming integrated assemblies.
Abstract:
An electronic device comprising a cell region comprising stacks of alternating dielectric materials and conductive materials. A pillar region is adjacent to the cell region and comprises storage node segments adjacent to adjoining oxide materials and adjacent to a tunnel region. The storage node segments are separated by a vertical portion of the tunnel region. A high-k dielectric material is adjacent to the conductive materials of the cell region and to the adjoining oxide materials of the pillar region. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.