摘要:
The invention provides a method of growing a non-polar a-plane gallium nitride. In the method, first, an r-plane substrate is prepared. Then, a low-temperature nitride-based nucleation layer is deposited on the substrate. Finally, the non-polar a-plane gallium nitride is grown on the nucleation layer. In growing the non-polar a-plane gallium nitride, a gallium source is supplied at a flow rate of about 190 to 390 μmol/min and the flow rate of a nitrogen source is set to produce a V/III ratio of about 770 to 2310.
摘要:
A semiconductor laser comprises a sapphire substrate, an AlN buffer layer, Si-doped GaN n-layer, Si-doped Al0.1Ga0.9N n-cladding layer, Si-doped GaN n-guide layer, an active layer having multiple quantum well (MQW) structure in which about 35 Å in thickness of GaN barrier layer 62 and about 35 Å in thickness of Ga0.95In0.05N well layer 61 are laminated alternately, Mg-doped GaN p-guide layer, Mg-doped Al0.25Ga0.75N p-layer, Mg-doped Al0.1Ga0.9N p-cladding layer, and Mg-doped GaN p-contact layer are formed successively thereon. A ridged hole injection part B which contacts to a ridged laser cavity part A is formed to have the same width as the width w of an Ni electrode. Because the p-layer has a larger aluminum composition, etching rate becomes smaller and that can prevent from damaging the p-guide layer in this etching process.
摘要翻译:半导体激光器包括蓝宝石衬底,AlN缓冲层,Si掺杂的GaN n层,Si掺杂的Al 0.1 Ga 0.9 N n包层,Si- 掺杂GaN n引导层,具有多个量子阱(MQW)结构的有源层,其中GaN阻挡层62的厚度约为35,Ga Ga 2 O 3的厚度为约35。 0.05N的N阱层61交替层叠,Mg掺杂的GaN p导向层,掺杂了Mg的Al 0.25 N Ga 0.75 N p层,Mg- 掺杂的Al 0.1 Ga 0.9 N p包覆层和Mg掺杂的GaN p接触层。 与脊状激光腔部A接触的脊状空穴注入部B形成为与Ni电极的宽度w相同的宽度。 因为p层具有较大的铝组成,所以蚀刻速率变小,并且可以防止在该蚀刻工艺中损坏p导向层。
摘要:
The invention relates to a monolithic white light emitting device using wafer bonding or metal bonding. In the invention, a conductive submount substrate is provided. A first light emitter is bonded onto the conductive submount substrate by a metal layer. In the first light emitter, a p-type nitride semiconductor layer, a first active layer, an n-type nitride semiconductor layer and a conductive substrate are stacked sequentially from bottom to top. In addition, a second light emitter is formed on a partial area of the conductive substrate. In the second light emitter, a p-type AlGaInP-based semiconductor layer, an active layer and an n-type AlGaInP-based semiconductor layer are stacked sequentially from bottom to top. Further, a p-electrode is formed on an underside of the conductive submount substrate and an n-electrode is formed on a top surface of the n-type AlGaInP-based semiconductor layer.
摘要:
A method of growing a nitride single crystal layer, and a method of manufacturing a light emitting device using the method are disclosed. The method of growing a nitride single crystal layer comprises the steps of preparing a silicon substrate having an upper surface of a crystal plane (111), forming a buffer layer having the formula of SixGe1-x, (where 0
摘要翻译:公开了一种生长氮化物单晶层的方法,以及使用该方法制造发光器件的方法。 生长氮化物单晶层的方法包括以下步骤:制备具有晶面(111)的上表面的硅衬底,形成具有下式的缓冲层:Si< 1 x x,(其中0
摘要:
Provided are a nitride semiconductor light-emitting device comprising a polycrystalline or amorphous substrate made of AlN; a plurality of dielectric patterns formed on the AlN substrate and having a stripe or lattice structure; a lateral epitaxially overgrown-nitride semiconductor layer formed on the AlN substrate having the dielectric patterns by Lateral Epitaxial Overgrowth; a first conductive nitride semiconductor layer formed on the nitride semiconductor layer; an active layer formed on the first conductive nitride semiconductor layer; and a second conductive nitride semiconductor layer formed on the active layer; and a process for producing the same.
摘要:
The method of the invention for producing a Group III nitride compound semiconductor, employing an etchable substrate which is produced from a material other than the Group III nitride compound semiconductor, includes stacking one or more layers of the Group III nitride compound semiconductor on one face of the substrate and etching the other face of the substrate while stacking one or more semiconductor layers or after completion of stacking one or more semiconductor layers, to thereby reduce the thickness of most of the substrate. The apparatus of present invention for producing a semiconductor through vapor phase growth, contains a substrate for vapor-phase-growing the semiconductor; a source-supplying system for supplying a source for vapor phase growth of the semiconductor; and an etchant-supplying system, wherein the source-supplying system and the etchant-supplying system are isolated through placement of the substrate.
摘要:
A method for manufacturing a laser diode using Group III nitride compound semiconductor comprising a buffer layer 2, an n+ layer 3, a cladding layer 4, an active layer 5, a p-type cladding layer 61, a contact layer 62, an SiO2 layer 9, an electrode 7 which is formed on the window formed in a portion of the SiO2 layer 9, and an electrode 8 which is formed on a portion of the n+ layer 3 by etching a portion of 4 layers from the contact layer 62 down to the cladding layer 4. One pair of opposite facets S of a cavity is formed by RIBE, and then the facets are etched by gas cluster ion beam etching using Ar gas. As a result, the facets S are flatted and the mirror reflection of the facets S is improved.
摘要:
A method of producing a light-emitting semiconductor device of a group III nitride compound includes forming a high carrier concentration N+-layer satisfying the formula (Alx3Ga1-x3)y3In1-y3N, wherein 0≦x3≦1, 0≦y3≦1 and 0≦x3+y3≦1, forming an emission layer of a group III nitride compound semiconductor satisfying the formula, Alx1Gay1In1-x1-y1N, where 0≦x1≦1, 0≦y1≦1 and 0≦x1+y1≦1 on the high carrier concentration layer N+-layer, and forming a P-layer of a P-type conduction, on the emission layer, the P-layer including aluminum gallium nitride satisfying the formula Alx2Ga1-x2N, wherein 0≦x2≦1.
摘要翻译:制备III族氮化物化合物的发光半导体器件的方法包括形成满足式(Al x Ga Ga 1-x 3)y 3 In 1-y 3 N的高载流子浓度N +层,其中0≦̸ x3≦̸ 1,0
摘要:
Disclosed are a nitride based semiconductor device, including a high-quality GaN layer formed on a silicone substrate, and a process for preparing the same. A nitride based semiconductor device in accordance with the present invention comprises a plurality of nanorods aligned and formed on the silicone substrate in the vertical direction; an amorphous matrix layer filling spaces between nanorods so as to protrude some upper portion of the nanorods; and a GaN layer formed on the matrix layer.
摘要:
Disclosed are a nitride based semiconductor device, including a high-quality GaN layer formed on a silicone substrate, and a process for preparing the same. A nitride based semiconductor device in accordance with the present invention comprises a plurality of nanorods aligned and formed on the silicone substrate in the vertical direction; an amorphous matrix layer filling spaces between nanorods so as to protrude some upper portion of the nanorods; and a GaN layer formed on the matrix layer.