摘要:
An optical transmitter photonic integrated circuit (TxPIC) comprises a semiconductor monolithic chip with a plurality of optical signal channels where each channel comprises a modulated signal source. The output from the modulated signal sources are coupled to an input of an integrated optical combiner to form a WDM output signal for transmission off the TxPIC chip to an optical transmission link. An optical service channel (OSC) is also integrated on the TxPIC chip to receive a service signal from the optical receiver source which is also coupled the optical transmission link.
摘要:
An optical system may include a polarization beam splitter having an input that receives multiple optical signals, a first output and a second output. The first output may provide components of the multiple optical signals having a first polarization. The second output may provide components of the multiple optical signals having a second polarization. The optical system may include a rotator having an input that receives the components to rotate the first polarization such that each of the components has the second polarization, and an output to supply components as rotated components.The optical system may also include an optical circuit including a substrate. The rotator may be separate from the substrate. The optical circuit may include an optical demultiplexer circuit provided on the substrate to receive the rotated components and the components.
摘要:
An optical system may include an optical multiplexer or demultiplexer circuit having a slab with a propagation region. The propagation region may have a first propagation section and a second propagation section, such that a portion of the first propagation section and a portion of the second propagation section overlap each other to form a shared propagation section. The shared propagation section may include both the portion of the first propagation section and the portion of the second propagation section. The first propagation section and the second propagation section may each have a first end and a second end. The optical system may further include multiple waveguides directly connected to the second end of the first propagation section and directly connected to the second end of the second propagation section.
摘要:
The present invention provides for a transceiver comprising a transmitter portion and a receiver portion. The transmitter portion includes a laser, the laser providing an optical signal having one of a plurality of wavelengths. The optical signal from the laser is modulated to create a first wavelength-division multiplexed signal at an output of the transceiver. The optical signal from the laser is also used by a demultiplexer to demultiplexer a second wavelength-division multiplexed signal at an input of the transceiver. The use of the optical signal from the laser in both modulation and demodulation of wavelength-division multiplexed signals results in a transceiver having fewer discrete components resulting in a compact design and reduced costs.
摘要:
Consistent with the present disclosure, an AWG is provided that has grating waveguide groupings that extend between a first free space region and a second free space region. The difference in length (ΔL) between successive grating waveguides differs for each grouping of grating waveguides, such that, for example, the ΔL associated with a given grating waveguide grouping is not an integer multiple of any of the other grating waveguide groupings. The grating waveguide groupings direct images having relatively small wavelength differences to a given output waveguide, and each grating waveguide grouping has an associated passband, which is similar to that of the conventional AWG. Unlike the conventional AWG, however, multiple grating waveguide groupings are included in the same AWG, such that the spectra associated with the grating waveguide groupings combine to provide a transmission characteristic having a passband that is greater than any individual passband. Accordingly, even if the optical signal wavelengths vary or are offset from the center wavelength of the passband, such wavelengths may still be transmitted with less loss.
摘要:
Consistent with the present disclosure, a current blocking layer is provided between output waveguides carrying light to be sensed by the photodiodes in a balanced photodetector, and the photodiodes themselves. Preferably, the photodiodes are provided above the waveguides and sense light through evanescently coupling with the waveguides. In addition, the current blocking layer may include alternating p and n-type conductivity layers, such that, between adjacent ones of such layers, a reverse biased pn-junction is formed. The pn-junctions, therefore, limit the amount of current flowing from one photodiode of the balanced detector to the other, thereby improving performance.
摘要:
Consistent the present disclosure, a receive circuit is provided that includes a balanced detector portion and a transimpedance amplifier (TIA). The anode of one photodiode is connected to the cathode of the other by a bonding pad, which supplies the sum of the currents generated in each photodiode to an input of the TIA. Thus, the TIA may, for example, have a single input, as opposed to multiple inputs, thereby reducing the number of connections so that the photodiodes and the TIA may be integrated onto a smaller die. In addition, since there are few connections, fewer TIAs are required and differential stages are unnecessary. Power consumption is thus reduced, and, since the photodiode current is fed through one input to the TIA, fewer feedback resistors are required, thereby reducing thermal noise. In addition, since the anode of one photodiode is connected to the cathode of the other, the dark current generated in each flows in opposite directions, and is therefore effectively cancelled out. Since one input is provided, impedance matching with other inputs is unnecessary, nor is additional DC biasing circuitry needed. As described in greater detail below, an example of the present disclosure includes a bonding pad, which connects the two photodiodes and provides the input current to the TIA.
摘要:
Embodiments of the present invention provide systems, devices and methods in which optical reflections are reduced in a photonic integrated circuit. These embodiments include reflection suppression elements which operate to dissipate optical energy that would otherwise provide a source for optical reflections which may impact the operation of one or more devices within the photonic integrated circuit. In particular, within photonic integrated circuits incorporating semiconductor optical amplifiers, embodiments of the present invention include reflection suppression elements which operate to dissipate optical energy preventing the semiconductor optical amplifiers from operating in a gain-clamped mode.
摘要:
Method and apparatus for utilizing a probe card for testing in-wafer photonic integrated circuits (PICs) comprising a plurality of in-wafer photonic integrated circuit (PIC) die formed in the surface of a semiconductor wafer where each PIC comprises one or more electro-optic components with formed wafer-surface electrical contacts. The probe card has a probe card body with at least one row of downwardly dependent, electrically conductive contact probes. The probe body is transversely translated over the surface of the wafer to a selected in-wafer photonic integrated circuit (PIC) die. Then, the contact probes of the probe card are brought into engagement with surface electrical contacts of the selected photonic integrated circuit (PIC) die for testing the operation of electro-optic components in the selected in-wafer photonic integrated circuit (PIC) die.
摘要:
A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature. However, control is maintained such that the channel spectral spacing between channels across multiple signal channels, whether such spacing is periodic or aperiodic, between adjacent laser sources in the thermally floating wavelength grid are maintained in a fixed relationship. Means are then provided at an optical receiver to discover and lock onto floating wavelength grid of transmitted WDM signals and thereafter demultiplex the transmitted WDM signals for OE conversion.