Abstract:
An electronic module is provided, including an electronic element and a strengthening layer formed on a side surface of the electronic element but not formed on an active surface of the electronic element so as to strengthen the structure of the electronic module. Therefore, the electronic element is prevented from being damaged when the electronic module is picked and placed.
Abstract:
A semiconductor substrate is provided, including a substrate body, a plurality of conductive through holes penetrating the substrate body, and at least one pillar disposed in the substrate body with the at least one pillar being free from penetrating the substrate body. When the semiconductor substrate is heated, the at least one pillar adjusts the expansion of upper and lower sides of the substrate body. Therefore, the upper and lower sides of the substrate body have substantially the same thermal deformation, and the substrate body is prevented from warpage.
Abstract:
An electronic package is provided, which includes: a first circuit structure; at least first electronic element disposed on a surface of the first circuit structure; at least a first conductive element formed on the surface of the first circuit structure; a first encapsulant encapsulating the first electronic element and the first conductive element; and a second circuit structure formed on the first encapsulant and electrically connected to the first conductive element. By directly disposing the electronic element having high I/O functionality on the circuit structure, the invention eliminates the need of a packaging substrate having a core layer and thus reduces the thickness of the electronic package. The invention further provides a method for fabricating the electronic package.
Abstract:
An electronic module is provided, including an electronic element and a strengthening layer formed on a side surface of the electronic element but not formed on an active surface of the electronic element so as to strengthen the structure of the electronic module. Therefore, the electronic element is prevented from being damaged when the electronic module is picked and placed.
Abstract:
A chip structure is provided, which includes: a substrate having a plurality of conductive pads formed on a surface thereof; a first copper layer formed on each of the conductive pads; a nickel layer formed on the first copper layer; a second copper layer formed on the nickel layer; and a tin layer formed on the second copper layer, thereby effectively reducing stresses.