Abstract:
A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.
Abstract:
A dry etching method for isotropically etching each of SiGe layers selectively relative to each of Si layers in a laminated film is provided. The laminated film can include Si layers and SiGe layers alternately and repeatedly laminated. Each of the SiGe layers can be plasma-etched with plasma generated by a pulse-modulated radio frequency power using NF3 gas.
Abstract:
A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.
Abstract:
A method and device for processing a gas by forming microwave plasmas of the gas. The gas that is to be processed is set in a two or three co-axial vortex flow inside the device and exposed to a microwave field to form the plasma in the inner co-axial vortex flow, which subsequently is expelled as a plasma afterglow through an outlet of the device.
Abstract:
The present invention relates to a method for depositing nanocrystalline diamond using a diamond vapor deposition facility which includes: a vacuum reactor including a reaction chamber connected to a vacuum source; a plurality of plasma sources arranged along a matrix that is at least two-dimensional in the reaction chamber; and a substrate holder arranged in the reactor, said method being characterized in that the deposition is carried out at a temperature of 100 to 500° C.
Abstract:
A plasma processing apparatus includes a microwave introduction device which introduces a microwave into a process chamber. The microwave introduction device includes a plurality of microwave transmitting plates which is fitted into a plurality of openings of a ceiling. The microwave transmitting plates are arranged on one virtual plane parallel to a mounting surface of a mounting table, with the microwave transmitting plates fitted into the respective openings. The microwave transmitting plates includes first to third microwave transmitting plates. The first to third microwave transmitting plates are arranged in such a manner that a distance between the center point of the first microwave transmitting window and the center point of the second microwave transmitting window becomes equal or approximately equal to a distance between the center point of the first microwave transmitting window and the center point of the third microwave transmitting window.
Abstract:
A plasma processing apparatus includes a microwave introduction device which introduces a microwave into a process chamber. The microwave introduction device includes a plurality of microwave transmitting plates which is fitted into a plurality of openings of a ceiling. The microwave transmitting plates are arranged on one virtual plane parallel to a mounting surface of a mounting table, with the microwave transmitting plates fitted into the respective openings. The microwave transmitting plates includes first to third microwave transmitting plates. The first to third microwave transmitting plates are arranged in such a manner that a distance between the center point of the first microwave transmitting window and the center point of the second microwave transmitting window becomes equal or approximately equal to a distance between the center point of the first microwave transmitting window and the center point of the third microwave transmitting window.
Abstract:
This application is directed to an apparatus for creating microwave radiation patterns for an object detection system. The apparatus includes a waveguide conduit having first slots at one side of the conduit and corresponding second slots at an opposite side of the conduit. The waveguide conduit is coupled to a microwave source for transmitting microwaves from the microwave source through the plurality of first slots. A plunger is moveably positioned in the waveguide conduit from one end thereof. The plunger allows the waveguide conduit to be tuned to generally optimize the power of the microwaves exiting the first slots. Secondary plungers are each fitted in one of the second slots to independently tune or detune microwave emittance through a corresponding first slot.
Abstract:
A method and device for processing a gas by forming microwave plasmas of the gas. The gas that is to be processed is set in a two or three co-axial vortex flow inside the device and exposed to a microwave field to form the plasma in the inner co-axial vortex flow, which subsequently is expelled as a plasma afterglow through an outlet of the device.
Abstract:
A method of generating a film during a chemical vapor deposition process is disclosed. One embodiment includes generating a first electrical pulse having a first pulse amplitude; using the first electrical pulse to generate a first density of radicalized species; disassociating a feedstock gas using the radicalized species in the first density of radicalized species, thereby creating a first deposition material; depositing the first deposition material on a substrate; generating a second electrical pulse having a second pulse amplitude, wherein the second pulse amplitude is different from the first pulse width; using the second electrical pulse to generate a second density of radicalized species; disassociating a feedstock gas using the radicalized species in the second density of radicalized species, thereby creating a second deposition material; and depositing the second plurality of deposition materials on the first deposition material.