Abstract:
Micronized polymers suitable for use in fuels and lubricants having a particle size distribution of less than 30 microns obtained from water-soluble solid organic polymers is provided. A water-soluble solid organic polymer having a number average molecular weight in the range of 1000 to 200,000 is subjected to a molecular segmentation in a polar solvent in a polymer to solvent ratio in the range of 1:1 to 1:10 to produce a micronized polymer having a particle size distribution of less than 30 microns.
Abstract:
A diesel fuel additive package, diesel fuel containing the additive and methods for operating an engine on the diesel fuel and additive. The fuel additive includes a reaction product of (a) a hydrocarbyl substituted dicarboxylic acid or anhydride, and (b) an amine compound or salt thereof of the formula wherein R is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 15 carbon atoms, and R1 is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 20 carbon atoms. The reaction product contains at least one amino triazole group. Component (2) of the additive is a hydrocarbyl succinimide dispersant. The additive also includes (3) a C2 to C10 alkyl alcohol; and (4) optionally, a lubricity additive. In the additive, a weight ratio of component (1) to component (2) in the fuel ranges from about 1:3 to about 1:5.
Abstract:
A diesel fuel additive composition, a fuel containing the fuel additive, a method for improving diesel engine performance using the additive. The diesel fuel additive includes a reaction product of (a) a hydrocarbyl-substituted acylating agent and (b) a reactant selected from the group consisting of a nitrogen-containing compound, a hydroxyl-containing compound, and water that provides a reaction product selected from the group consisting (1) a mono-amide/mono-acid or metal free mono-acid salt thereof, (2) a diacid or metal free diacid salt thereof, and (3) mono-ester/mono-acid or metal free mono-acid salt thereof. The reaction product includes at least about 10 molar percent acid groups based on total moles of the reaction product.
Abstract:
Use in a gas oil fuel composition, which preferably comprises a Fischer-Tropsch derived fuel, of a compound according to formula (I): wherein: R1 to R4 are each independently hydrogen or a C1-10 alkyl group, where such alkyl groups may be the same as or different from one another; and X is a nitrogen- or oxygen-containing group, for the purpose of reducing the cetane number of said fuel composition; preparation of such a fuel composition; and operating a fuel consuming system.
Abstract:
Methods and compositions for the production of oil, fuels, oleochemicals, and other compounds in recombinant microorganisms are provided, including oil-bearing microorganisms and methods of low cost cultivation of such microorganisms. Microalgal cells containing exogenous genes encoding, for example, a lipase, a sucrose transporter, a sucrose invertase, a fructokinase, a polysaccharide-degrading enzyme, a keto acyl-ACP synthase enzyme, a fatty acyl-ACP thioesterase, a fatty acyl-CoA/aldehyde reductase, a fatty acyl-CoA reductase, a fatty aldehyde reductase, a fatty aldehyde decarbonylase, and/or an acyl carrier protein are useful in manufacturing transportation fuels such as renewable diesel, biodiesel, and renewable jet fuel, as well as oleochemicals such as functional fluids, surfactants, soaps and lubricants.
Abstract:
Formulations using tartaric compounds of the present invention in a low sulfur, low ash and low phosphorous lubricant lower wear, and friction and improves fuel economy.
Abstract:
A functional fluid suitable for use in an internal combustion engine is provided, comprising: (a) a major amount of a base fluid; (b) a minor amount of a polysubstituted alkanol amine derivative reaction product obtainable by reacting: (i) a carboxylate compound of formula I R1COOR2 (I) in which: R1 is an aliphatic C1-30-hydrocarbon radical; and R2 is hydrogen or alkyl, mono- or polyhydroxyalkyl, or ammonium; with (ii) an alkanol amine of the formula II NHR3R4 (II) wherein R3 and R4 are independently selected from hydrogen atoms and linear or branched-chain hydrocarbon groups, the carbon chain of which is optionally interrupted by one or more —NH— groups and which optionally has at least one hydroxyl group attached to a carbon atom of the hydrocarbon group, with the proviso that R3 and R4 are not both hydrogen atoms and that at least one of said residues R3 and R4 carries at least one hydroxyl group; in a molar ratio of the —COO— groups of the carboxylate compound of formula I to the molar sum of OH and NH groups of the alkanol amine of formula II in a range and under reaction conditions supporting the formation of a reaction product comprising polysubstituted alkanol amine derivatives; and (c) a minor amount of a detergent additive.
Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
The present invention relates to additives for enhancing the lubricity of hydrocarbon fuel oils, the inventive additive composition including one or more of the reaction products of (i) an alkylated polyamine and (ii) urea or isocyanate, or the salt adducts of these reaction products. More particularly, the present invention provides for a process for improving the lubricity of hydrocarbon fuel oils, which are low in inherent lubricity due to treatment to reduce sulfur and aromatic components for improved emissions.