Abstract:
Embodiments are directed to a method of forming portions of a fin-type field effect transistor (FinFET). The method includes forming at least one fin, and forming a dielectric layer over at least a portion of the at least one fin. The method further includes forming a work function layer over at least a portion of the dielectric layer. The method further includes forming a source region or a drain region adjacent the at least one fin, and performing an anneal operation, wherein the anneal operation anneals the dielectric layer and either the source region or the drain region, and wherein the work function layer provides a protection function to the at least a portion of the dielectric layer during the anneal operation.
Abstract:
Embodiments are directed to a method Embodiments are directed to a test structure of a fin-type field effect transistor (FinFET). The test structure includes a first conducting layer electrically coupled to a dummy gate of the FinFET, and a second conducting layer electrically coupled to a substrate of the FinFET. The test structure further includes a third conducting layer electrically coupled to the dummy gate of the FinFET, and a first region of the FinFET at least partially bound by the first conducting layer and the second conducting layer. The test structure further includes a second region of the FinFET at least partially bound by the second conducting layer and the third conducting layer, wherein the first region comprises a first dielectric having a first dimension, and wherein the second region comprises a second dielectric having a second dimension greater than the first dimension.
Abstract:
Integrated devices and fabrication methods thereof are presented. The methods include, for instance fabricating an integrated device comprising an inductive portion and a capacitive portion, the integrated device being at least partially embedded within an electrode. The fabricating includes providing a conductive coil at least partially within an insulator layer above a substrate, the conductive coil comprising exposed portions, wherein the inductive portion of the integrated device comprises the conductive coil; covering exposed portions of the conductive coil with a dielectric material; and forming the electrode at least partially around the dielectric covered portions of the conductive coil, the electrode being physically separated from the conductive coil by the dielectric material, wherein the capacitive portion of the integrated device comprises the electrode, the dielectric material, and the conductive coil. In one embodiment, the method further includes: exposing at least one further portion of the conductive coil; and providing another electrode in electrical contact with the at least one exposed further portion of the conductive coil.
Abstract:
Devices and methods for forming semiconductor devices with middle of line capacitance reduction in self-aligned contact process flow and fabrication are provided. One method includes, for instance: obtaining a wafer with at least one source, drain, and gate; forming a first contact region over the at least one source and a second contact region over the at least one drain; and forming at least one first and second small contact over the first and second contact regions. One intermediate semiconductor device includes, for instance: a wafer with a gate, source region, and drain region; at least one first contact region positioned over a portion of the source; at least one second contact region positioned over a portion of the drain; at least one first small contact positioned above the first contact region; and at least one second small contact positioned above the second contact region.
Abstract:
Methods and structures for fabricating conductive vias in circuit structures are provided. Methods may include, for example, providing a substrate that includes a dopant and at least one trench formed in the substrate; providing an undoped semiconductor layer over a surface of the substrate within the trench; and providing a conductive material on top of dielectric layer in the trench, the conductive material forming the conductive via. The undoped semiconductor layer, having no dopant, reduces a parasitic capacitance between the conductive via and the substrate. The undoped semiconductor layer may also prevent migration of dopant from the substrate into the undoped semiconductor layer, further reducing capacitance in the circuit structure.
Abstract:
In one aspect there is set forth herein a semiconductor device having a first field effect transistor formed in a substrate structure, a second field effect transistor formed in the substrate structure, and a third field effect transistor formed in the substrate structure. The first field effect transistor can include a first gate stack configuration, and a first threshold voltage. The second field effect transistor can include a second gate stack configuration, and a second threshold voltage. The third field effect transistor can include a third gate stack configuration, and a third threshold voltage.
Abstract:
Devices and methods for forming semiconductor devices with self aligned contacts for improved process windows are provided. One method includes, for instance: obtaining a wafer with at least two gates, forming partial spacers adjacent to the at least two gates, and forming at least one contact on the wafer. One intermediate semiconductor device includes, for instance: a wafer with an isolation region, at least two gates disposed on the isolation region, at least one source region disposed on the isolation region, at least one drain region disposed on the isolation region, and at least one contact positioned between the at least two gates, wherein a first portion of the at least one contact engages the at least one source region or the at least one drain region and a second portion of the at least one contact extends above a top surface of the at least two gates.
Abstract:
A method for forming an integrated circuit having a test macro using a multiple patterning lithography process (MPLP) is provided. The method includes forming an active area of the test macro having a first and second gate region during a first step of MPLP, and forming a first and second source/drain regions in the active area during a second step of the MPLP. The method also includes forming a first contact connected to the first gate region, a second contact connected to the second gate region, a third contact connected to the first source/drain region, and a forth contact connected to the source/drain region and determining if an overlay shift occurred between the first step and the second step of the step of the MPLP by testing for a short between one or more of the first contact, the second contact, the third contact, or the fourth contact.
Abstract:
An improved method and structure for fabrication of replacement metal gate (RMG) field effect transistors is disclosed. P-type field effect transistor (PFET) gate cavities are protected while N work function metals are deposited in N-type field effect transistor (NFET) gate cavities.
Abstract:
One illustrative device disclosed herein includes, among other things, an active layer positioned above a layer of insulating material, a fin positioned above the active layer, a gate insulation layer positioned on the active layer and on the fin, a conductive gate structure that is positioned around at least a portion of the fin and above at least a portion of the active layer, wherein the conductive gate structure comprises at least one work function adjusting metal layer positioned on the gate insulation layer, a first channel region defined in the fin under the conductive gate structure, and a second channel region defined in the active layer under the conductive gate structure.