Abstract:
There is provided a GaN-based semiconductor light emitting device including: a substrate; and an n-type GaN-based semiconductor layer, an active layer and a p-type GaN-based semiconductor layer sequentially deposited on the substrate, wherein the active layer includes: a first barrier layer including AlxInyGa1−x−yN, where 0
Abstract translation:提供一种GaN基半导体发光器件,包括:衬底; 以及依次沉积在所述衬底上的n型GaN基半导体层,有源层和p型GaN基半导体层,其中所述有源层包括:包含Al x In y Ga 1-x-y N的第一势垒层, x <1,0
Abstract:
There is provided a white light emitting device that prevents a red phosphor from resorbing wavelength-converted light to improve white luminous efficiency. A white light emitting device according to an aspect of the invention includes a package body; at least two LED chips mounted to the package body and emitting excitation light; and a molding unit including phosphors, absorbing the excitation light and emitting wavelength-converted light, in regions of the molding unit divided according to the LED chips and molding the LED chips. According to the aspect of the invention, since the phosphor for converted red light can be prevented from resorbing light generated from other regions of the molding unit, the white light emitting device that can improve white luminous efficiency or control color rendering and color temperature by adjusting a mixing ratio of converted light for white light emission.
Abstract:
The semiconductor light emitting device having a protrusion and recess structure includes: a lower clad layer disposed on a substrate; an active layer formed on one portion of a top surface of the lower clad layer; an upper clad layer formed on the active layer; a first electrode formed on the upper clad layer; and a second electrode that is formed on a protrusion and recess structural pattern region formed on a portion of the top surface of the lower clad layer not occupied by the active layer.
Abstract:
A light emitting diode (LED) and a method are provided for fabricating the a LED with an improved structure for better light emitting efficiency and better light output performance. The LED includes an n-GaN layer formed on a substrate to have a plurality of protrusions, thereby having an uneven surface, wherein a side surface of the protrusions is inclined with a first inclination angle α (35°≦α≦90°) with respect to an upper surface of the substrate; an active layer conformally formed on the surface of the n-GaN layer, wherein the surface of the active layer formed on the side surface of the protrusions is inclined with a second inclination angle β (35°≦β≦α) with respect to the upper surface of the substrate; a p-GaN layer conformally formed on the surface of the active layer, wherein the surface of the p-GaN layer formed on the surface of the inclined portion of the active layer is inclined with a third inclination angle γ (20°≦γ
Abstract:
A nitride-based semiconductor light-emitting device having an improved structure to enhance light extraction efficiency, and a method of manufacturing the same are provided. The method includes the operations of sequentially forming an n-clad layer, an active layer, and a p-clad layer on a substrate; forming a plurality of masking dots on an upper surface of the p-clad layer; forming a p-contact layer having a rough surface on portions of the p-clad layer between the masking dots; forming a rough n-contact surface of the n-clad layer having the same rough shape as the rough shape of the p-contact layer by dry-etching from a portion of the upper surface of the p-contact layer to a desired depth of the n-clad layer; forming an n-electrode on the rough n-contact surface; and forming a p-electrode on the p-contact layer.
Abstract:
Provided is a light-emitting device and a method of manufacturing the same. The light-emitting device includes a substrate having at least one protruded portion with a curved surface in which a consistent defect density and uniform stress distribution can be obtained even when the growth of the semiconductor crystal layer and the forming of the light-emitting device are completed. In addition, the light-emitting device has a high the light extraction efficiency for extracting light generated at an electroluminescense layer externally.
Abstract:
A monolithic white light emitting device is provided. An active layer in the monolithic white light emitting device is doped with silicon or rare earth metal that forms a sub-band. The number of active layers included in the monolithic white light emitting device is one or two. When two active layers are included in the monolithic white light emitting device, a cladding layer is interposed between the two active layers. According to this light emission structure, white light can be emitted by a semiconductor, so a phosphor is not necessary. The monolithic white light emitting device is easily manufactured at a low cost and applied to a wide range of fields compared with a conventional white light emitting device that needs a help of a phosphor.
Abstract:
A semiconductor light emitting diode having a textured structure and a method of manufacturing the same are provided. The semiconductor light emitting diode includes a first semiconductor layer formed into a textured structure, an intermediate layer formed between the textured structures of the patterned first semiconductor layer, and a second semiconductor layer, an active layer, and a third semiconductor layer sequentially formed on the first semiconductor layer and the intermediate layer.
Abstract:
Provided is a light-emitting device and a method of manufacturing the same. The light-emitting device includes a substrate having at least one protruded portion with a curved surface in which a consistent defect density and uniform stress distribution can be obtained even when the growth of the semiconductor crystal layer and the forming of the light-emitting device are completed. In addition, the light-emitting device has a high the light extraction efficiency for extracting light generated at an electroluminescense layer externally.
Abstract:
Provided is a nitride semiconductor formed on a Si substrate and a method of manufacturing the same. A buffer layer is formed on the silicon substrate, and an intermediate layer having voids is formed on the buffer layer. A planarizing layer is formed on the intermediate layer, and a nitride semiconductor layer is formed on the planarizing layer. Therefore, a nitride semiconductor in which the creation of crystal defects, dislocation or cracks is substantially decreased can be produced on a large scale at a low cost.