Abstract:
The invention provides droplet actuators and droplet actuator cassettes including reagent storage capabilities, as well as methods of making and using the droplet actuators and cassettes. The invention also provides continuous flow channel elements and techniques for using electrodes to manipulate droplets in flowing streams. The invention also discloses methods of separating compounds on a droplet actuator. Various other aspects of the invention are also disclosed.
Abstract:
A droplet actuator for manipulating a fluid using an electrical field includes a droplet arranged on or over an electrode. The droplet includes a set of beads arranged substantially in a monolayer on or over a surface of the droplet actuator.
Abstract:
The invention provides a droplet actuator. The droplet actuator may include a base substrate and a top substrate separated to form a gap. The base substrate may include electrodes configured for conducting droplet operations in the gap; and the top substrate may include a glass substrate portion coupled to a non-glass portion, where the non-glass portion may include one or more openings establishing a fluid path extending from an exterior of the droplet actuator and into the gap. The invention also provides related methods of manufacturing the droplet actuator, methods of using the droplet actuator, and methods of loading the droplet actuator.
Abstract:
The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of splitting a droplet is provided, the method including providing a droplet microactuator including a droplet including one or more beads and immobilizing at least one of the one or more beads. The method further includes conducting one or more droplet operations to divide the droplet to yield a set of droplets including a droplet including the one or more immobilized beads and a droplet substantially lacking the one or more immobilized beads.
Abstract:
The invention relates to bead incubating and washing on a droplet actuator. Methods for incubating magnetically responsive beads that are labeled with primary antibody, a sample (i.e., analyte), and secondary reporter antibodies on a magnet, on and off a magnet, and completely off a magnet are provided. Also provided are methods for washing magnetically responsive beads using shape-assisted merging of droplets. Also provided are methods for shape-mediated splitting, transporting, and dispensing of a sample droplet that contains magnetically responsive beads. The apparatuses and methods of the invention provide for rapid time to result and optimum detection of an analyte in an immunoassay.
Abstract:
The present invention is directed to methods of improving accuracy of droplet metering using at least one on-actuator reservoir as the fluid input. In some embodiments, the on-actuator reservoir that is used for metering droplets includes a loading port, a liquid storage zone, a droplet metering zone, and a droplet dispensing zone. The on-actuator reservoirs are designed to prevent liquid flow-back into the loading port and to prevent liquid from flooding into the droplet operations gap in the dispensing zone.
Abstract:
The invention is directed to a droplet actuator device and methods for integrating gel electrophoresis analysis with pre or post-analytical sample handling as well as other molecular analysis processes. Using digital microfluidics technology, the droplet actuator device and methods of the invention provide the ability to perform gel electrophoresis and liquid handling operations on a single integrated device. The integrated liquid handling operations may be used to prepare and deliver samples to the electrophoresis gel, capture and subsequently process products of the electrophoresis gel or perform additional assays on the same sample materials which are analyzed by gel electrophoresis. In one embodiment, one or more molecular assays, such as nucleic acid (e.g., DNA) quantification by real-time PCR, and one or more sample processing operations such as sample dilution is performed on a droplet actuator integrated with an electrophoresis gel. In one embodiment, an electrophoresis gel may be integrated on the top substrate of the droplet actuator.
Abstract:
The invention provides nonlimiting examples of structures for and methods of dispensing droplets in a droplet actuator. The droplet actuator structures and methods of the invention exhibit numerous advantages over droplet actuators of the prior art. In various embodiments, the structures and methods of the invention provide, among other things, improved efficiency, throughput, scalability, and/or droplet uniformity, as compared with existing droplet actuators. Further, in some embodiments, the droplet actuators provide configurations for improved methods of loading and/or unloading fluid and/or droplets. In yet other embodiments, the droplet actuators provide fluid loading configurations for loading numerous fluid reservoirs in a substantially simultaneous and/or substantially sequential manner.
Abstract:
The invention provides droplet actuators and droplet actuator cassettes including reagent storage capabilities, as well as methods of making and using the droplet actuators and cassettes. The invention also provides continuous flow channel elements and techniques for using electrodes to manipulate droplets in flowing streams. The invention also discloses methods of separating compounds on a droplet actuator. Various other aspects of the invention are also disclosed.
Abstract:
The invention provides a droplet actuator. The droplet actuator may include a base substrate and a top substrate separated to form a gap. The base substrate may include electrodes configured for conducting droplet operations in the gap; and the top substrate may include a glass substrate portion coupled to a non-glass portion, where the non-glass portion may include one or more openings establishing a fluid path extending from an exterior of the droplet actuator and into the gap. The invention also provides related methods of manufacturing the droplet actuator, methods of using the droplet actuator, and methods of loading the droplet actuator.