Abstract:
Embodiments described herein relate generally to a communication between a user equipment (UE) and an evolved Node B (eNB) that are both running in Enhanced Coverage (EC) mode. The UE and eNB may communicate in a contention-based random access procedure having an EC level that may be used to determine the number of times an RA preamble may be sent, and one or more RA response opportunity windows that may be used to receive one or more RA responses. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of techniques and systems for extended discontinuous reception (DRX) are described herein. In some embodiments, a user equipment (UE) configured for extended DRX may include receiver circuitry and paging circuitry. The receiver circuitry may be configured to receive a system frame number from an eNB and receive extension data from the eNB. The paging circuitry may be configured to determine an augmented system frame number based on the system frame number and the extension data, determine a paging frame number based on the extension data, and monitor for paging occasions when the augmented system frame number is equal to the paging frame number. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of a User Equipment (UE) and method for selecting a Radio Resource Control (RRC) inactivity timer for a service operating in a wireless network are generally described herein. In some embodiments, the UE may be configured to operate in a 3GPP network in accordance with a Radio Resource Control (RRC) inactivity timer that controls RRC state transitions of the UE, and further in accordance with a Machine Type Communication (MTC) mode of operation. The UE may receive, from an Evolved Node-B (eNB), one or more messages that may include an RRC inactivity timer keep connected support value that indicates support of a keep connected mode. In some embodiments, when the UE operates in keep connected mode, the UE operates in an RRC connected state and is restricted from operating in other RRC states.
Abstract:
Apparatuses and methods for control of small data transmission by a user equipment (UE) are described herein. The UE may determine that data to be transmitted by the UE is small data if a size of the data is below a threshold. The UE may transmit a message indicating that the UE shall be transmitting small data responsive to determining that data to be transmitted by the UE is small data. The UE may receive a radio resource control (RRC) signal from an evolved Node B (eNodeB) that includes a logical channel identifier (LCID) of a small data radio bearer (SDRB) configured for transmission of small data. The UE may transmit small data on the SDRB subsequent to receiving the RRC signal from the eNodeB. The UE may refrain from transmitting other than small data on the SDRB. Other apparatuses and methods are described.
Abstract:
A user equipment (UE) is configured to receive, from a network, a first access control message and a second access control message. The first access control message corresponds to a first access control service, and the second access control message corresponds to a second access control service. The first and second access control messages include access control information for controlling access to the network for at least one application on the UE. The UE is also configured to determine a combined access level for the at least one application based on the first and second access control messages and to limit access to wireless communications for the at least one application based on the combined access level.
Abstract:
System information change notification techniques for wireless communication networks are described. In one embodiment, for example, an apparatus may comprise a memory and logic, at least a portion of which is implemented in circuitry coupled to the memory, the logic to determine to perform a system information (SI) update procedure at user equipment (UE), identify, based on an SI change indication, one or more SI messages from which to acquire system information blocks (SIBS) according to the SI update procedure, and acquire at least one SIB from each of the one or more SI messages for storage at the UE. Other embodiments are described and claimed.
Abstract:
Systems and methods of providing location techniques for a NB UE are described. The UE transmits, to a location server, a capability message that indicates position capabilities of the UE to support different positioning methods and common information related to the position methods, including that the UE is a NB UE. The UE receives a request for location information that includes a request for positioning measurements for a particular positioning method, a NB message size limit that indicates a limit on an amount of location information to return, and a NB response time to provide the positioning measurements. At least one of the response time or message size limit is different than for the NB UE than for non-NB UEs. The UE enters an idle state, performs the measurements, and transmits at expiry of or before the NB response time, a message containing the measurements.
Abstract:
Techniques described herein may be used to enable User Equipment (UE) to switch between Radio Access Technologies (RATs) while transitioning from an inactive state to an active state. For example. a UE may connect to a base station via one type of RAT (e.g., Long-Term Evolution (LTE) RAT), enter an inactive state, and later, while transitioning from the inactive state to an active state, connect to another base station via another type of RAT (e.g., a New Radio (NR) or 5th Generation (5G) RAT). The UE may transition from one RAT to another RAT without increasing signaling between the UE and the network beyond minimal signaling involved in a transition of the UE from the inactive state to an active state. The network may further minimize signaling by determining and communicating minimized connection configuration information to the UE.
Abstract:
An apparatus is configured to be employed within a base station. The apparatus comprises baseband circuitry which includes a radio frequency (RF) interface and one or more processors. The one or more processors are configured determine repetition level (RL) thresholds, allocate downlink resources, wherein the downlink resources include a repetition level (RL), send downlink data to the RF interface for transmission to a user equipment (UE) according to the RL, receive repetition feedback from the RF interface based on the transmission to the UE, and update aspects or the allocation of the downlink resources based on the repetition feedback.
Abstract:
Embodiments of a User Equipment (UE) arranged for transmitting packets in a cellular network are disclosed herein. The UE can generate a first packet having a first packet classification information and a second packet having a second packet classification information. The first packet classification information can be associated with a different quality of service (QoS) requirement than the second packet classification information. The UE, using a packet filter, can determine, based on the first packet classification information, a first traffic flow from a plurality of traffic flows in a traffic flow template (TFT) for transmitting the first packet. Additionally, the UE can determine, based on the second packet classification information, a second traffic flow from the plurality of traffic flows for transmitting the second packet. Subsequently, the UE send the first packet to the first traffic flow and the second packet to the second traffic flow.