Abstract:
In one embodiment, a method for making a 3D Metal-Insulator-Metal (MIM) capacitor includes providing a substrate having a surface, forming an array of upstanding rods or ridges on the surface, depositing a first layer of an electroconductor on the surface and the array of rods or ridges, coating the first electroconductive layer with a layer of a dielectric, and depositing a second layer of an electroconductor on the dielectric layer. In some embodiments, the array of rods or ridges can be made of a photoresist material, and in others, can comprise bonded wires.
Abstract:
Semiconductor integrated circuits (110) or assemblies are disposed at least partially in cavities between two interposers (120). Conductive vias (204M) pass through at least one of the interposers or at least through the interposer's substrate, and reach a semiconductor integrated circuit or an assembly. Other conductive vias (204M.1) pass at least partially through multiple interposers and are connected to conductive vias that reach, or are capacitively coupled to, a semiconductor IC or an assembly. Other features are also provided.
Abstract:
Apparatus relating generally to a back-end-of-line (“BEOL”) stack. In this apparatus, the BEOL stack is configured to electrically couple at least one first electrical component to at least one second electrical component. First contacts are provided on a first side of the BEOL stack with a first pitch for providing a bondable surface for connection to the at least one first electrical component. Second contacts are provided on a second side of the BEOL stack with a second pitch for providing another bondable surface for connection to the at least one second electrical component. The second pitch may be larger than the first pitch.
Abstract:
An integrated circuit (IC) package includes a first substrate having a backside surface and a top surface with a cavity disposed therein. The cavity has a floor defining a front side surface. A plurality of first electroconductive contacts are disposed on the front side surface, and a plurality of second electroconductive contacts are disposed on the back side surface. A plurality of first electroconductive elements penetrate through the first substrate and couple selected ones of the first and second electroconductive contacts to each other. A first die containing an IC is electroconductively coupled to corresponding ones of the first electroconductive contacts. A second substrate has a bottom surface that is sealingly attached to the top surface of the first substrate, and a dielectric material is disposed in the cavity so as to encapsulate the first die.
Abstract:
An integrated circuit (IC) package includes a first substrate having a backside surface and a top surface with a cavity disposed therein. The cavity has a floor defining a front side surface. A plurality of first electroconductive contacts are disposed on the front side surface, and a plurality of second electroconductive contacts are disposed on the back side surface. A plurality of first electroconductive elements penetrate through the first substrate and couple selected ones of the first and second electroconductive contacts to each other. A first die containing an IC is electroconductively coupled to corresponding ones of the first electroconductive contacts. A second substrate has a bottom surface that is sealingly attached to the top surface of the first substrate, and a dielectric material is disposed in the cavity so as to encapsulate the first die.
Abstract:
In a microelectronic component having conductive vias (114) passing through a substrate (104) and protruding above the substrate, one or more conductive features (120E.A, 120E.B, or both) are provided above the substrate that wrap around the conductive vias' protrusions (114′) to form capacitors, electromagnetic shields, and possibly other elements. Other features and embodiments are also provided.
Abstract:
Dies (110) with integrated circuits are attached to a wiring substrate (120), possibly an interposer, and are protected by a protective substrate (410) attached to a wiring substrate. The dies are located in cavities in the protective substrate (the dies may protrude out of the cavities). In some embodiments, each cavity surface puts pressure on the die to strengthen the mechanical attachment of the die the wiring substrate, to provide good thermal conductivity between the dies and the ambient (or a heat sink), to counteract the die warpage, and possibly reduce the vertical size. The protective substrate may or may not have its own circuitry connected to the dies or to the wiring substrate. Other features are also provided.
Abstract:
Each of a first and a second integrated circuit structures has hole(s) in the top surface, and capacitors at least partially located in the holes. A semiconductor die is attached to the top surface of the second structure. Then the first and second structures are bonded together so that the die becomes disposed in the first structure's cavity, and the holes of the two structures are aligned to electrically connect the respective capacitors to each other. A filler is injected into the cavity through one or more channels in the substrate of the first structure. Other embodiments are also provided.
Abstract:
In a multi-chip module (MCM), a “super” chip (110N) is attached to multiple “plain” chips (110F′ “super” and “plain” chips can be any chips). The super chip is positioned above the wiring board (WB) but below at least some of plain chips (110F). The plain chips overlap the super chip. Further, the plain chips' low speed IOs can be connected to the WB by long direct connections such as bond wires (e.g. BVAs) or solder stacks; such connections can be placed side by side with the super chip. Such connections can be long, so the super chip is not required to be thin. Also, if through-substrate vias (TSVs) are omitted, the manufacturing yield is high and the manufacturing cost is low. Other structures are provided that combine the short and long direct connections to obtain desired physical and electrical properties.
Abstract:
Each of a first and a second integrated circuit structures has hole(s) in the top surface, and capacitors at least partially located in the holes. A semiconductor die is attached to the top surface of the second structure. Then the first and second structures are bonded together so that the die becomes disposed in the first structure's cavity, and the holes of the two structures are aligned to electrically connect the respective capacitors to each other. A filler is injected into the cavity through one or more channels in the substrate of the first structure. Other embodiments are also provided.