Abstract:
An interposer (110) has contact pads at the top and/or bottom surfaces for connection to circuit modules (e.g. ICs 112). The interposer includes a substrate made of multiple layers (110.i). Each layer can be a substrate (110S), possibly a ceramic substrate, with circuitry. The substrates extend vertically. Multiple interposers are fabricated in a single structure (310) made of vertical layers (310.i) corresponding to the interposers' layers. The structure is diced along horizontal planes (314) to provide the interposers. An interposer's vertical conductive lines (similar to through-substrate vias) can be formed on the substrates' surfaces before dicing and before all the substrates are attached to each other. Thus, there is no need to make through-substrate holes for the vertical conductive lines. Non-vertical features can also be formed on the substrates' surfaces before the substrates are attached to each other. Other embodiments are also provided.
Abstract:
A microelectronic assembly can be made by joining first and second subassemblies by electrically conductive masses to connect electrically conductive elements on support elements of each subassembly. A patterned layer of photo-imageable material may overlie a surface of one of the support elements and have openings with cross-sectional dimensions which are constant or monotonically increasing with height from the surface of that support element, where the masses extend through the openings and have dimensions defined thereby. An encapsulation can be formed by flowing an encapsulant into a space between the joined first and second subassemblies.
Abstract:
Non-crystalline inorganic light emitting diode. In accordance with a first embodiment of the present invention, an article of manufacture includes a light emitting diode. The light emitting diode includes a non-crystalline inorganic light emission layer and first and second semiconducting non-crystalline inorganic charge transport layers surrounding the light emission layer. The light emission layer may be amorphous. The charge transport layers may be configured to inject one type of charge carrier and block the other type of charge carrier.
Abstract:
Non-crystalline inorganic light emitting diode. In accordance with a first embodiment of the present invention, an article of manufacture includes a light emitting diode. The light emitting diode includes a non-crystalline inorganic light emission layer and first and second semiconducting non-crystalline inorganic charge transport layers surrounding the light emission layer. The light emission layer may be amorphous. The charge transport layers may be configured to inject one type of charge carrier and block the other type of charge carrier.
Abstract:
In accordance with an embodiment of the present invention, an article of manufacture includes a side-emitting light emitting diode configured to emit light from more than two surfaces. The article of manufacture includes a first sheet electrically and thermally coupled to a first side of the light emitting diode, and a second sheet electrically and thermally coupled to a second side of the light emitting diode. The article of manufacture further includes a plurality of reflective surfaces configured to reflect light from all of the surfaces of the light emitting diode through holes in the first sheet. The light may be reflected via total internal reflection.
Abstract:
Direct-bonded LED arrays and applications are provided. An example process fabricates a LED structure that includes coplanar electrical contacts for p-type and n-type semiconductors of the LED structure on a flat bonding interface surface of the LED structure. The coplanar electrical contacts of the flat bonding interface surface are direct-bonded to electrical contacts of a driver circuit for the LED structure. In a wafer-level process, micro-LED structures are fabricated on a first wafer, including coplanar electrical contacts for p-type and n-type semiconductors of the LED structures on the flat bonding interface surfaces of the wafer. At least the coplanar electrical contacts of the flat bonding interface are direct-bonded to electrical contacts of CMOS driver circuits on a second wafer. The process provides a transparent and flexible micro-LED array display, with each micro-LED structure having an illumination area approximately the size of a pixel or a smallest controllable element of an image represented on a high-resolution video display.
Abstract:
High yield substrate assembly. In accordance with a first method embodiment, a plurality of piggyback substrates are attached to a carrier substrate. The edges of the plurality of the piggyback substrates are bonded to one another. The plurality of piggyback substrates are removed from the carrier substrate to form a substrate assembly. The substrate assembly is processed to produce a plurality of integrated circuit devices on the substrate assembly. The processing may use manufacturing equipment designed to process wafers larger than individual instances of the plurality of piggyback substrates.
Abstract:
A microelectronic assembly including an insulating layer having a plurality of nanoscale conductors disposed in a nanoscale pitch array therein and a pair of microelectronic elements is provided. The nanoscale conductors can form electrical interconnections between contacts of the microelectronic elements while the insulating layer can mechanically couple the microelectronic elements together.
Abstract:
A contact pad includes a solder-wettable porous network (310) which wicks the molten solder (130) and thus restricts the lateral spread of the solder, thus preventing solder bridging between adjacent contact pads.
Abstract:
A contact pad includes a solder-wettable porous network (310) which wicks the molten solder (130) and thus restricts the lateral spread of the solder, thus preventing solder bridging between adjacent contact pads.