摘要:
A semiconductor assembly is provided that includes a first substrate that has a first surface. A second substrate is coupled to and spaced apart from the first substrate. The second substrate has a second surface facing the first surface of the first substrate. The second substrate includes a set of cavities. A set of non-conductive pillars is disposed on and protrudes from the first surface of the first substrate. The set of non-conductive pillars is configured and positioned to engage the set of cavities of the second substrate to align the second substrate with the first substrate.
摘要:
The present invention generally relates to circuits on the nanotechnology scale. Specifically, it is directed to methods of fabricating carbon nanotube-based (i.e., CNT-based) circuits. The method involves providing a mixture of carbon nanotubes that is substantially disaggregated and patterning carbon nanotubes through the use of electrostatic forces. Carbon nanotubes in the mixture are typically disaggregated through the introduction of positive charge on the individual nanotubes. The patterning of the carbon nanotubes is typically accomplished using electrostatic attraction between pre-formed metal lines and the charged carbon nanotubes.
摘要:
A method for creating an integrated linear polarizer is provided. An electro-optical component is fabricated and may include a bottom electrode, a bottom cladding layer, side cladding features, an electro-optic polymer layer, a top cladding layer, and a top electrode. After fabrication, the electro-optical component is poled to create or enhance polarization properties of the electro-optic polymer layer. The electro-optical component may be heated to at least a first threshold temperature. An electric field may then be applied to the electro-optical component. In the presence of the electric field, the electro-optical component may be cooled to at or below a second threshold temperature that is less than the first threshold temperature. Once the electro-optical component has cooled to the second threshold temperature, the electric field may be removed.
摘要:
Methods and apparatuses for measuring the optical properties of solids, gels, and liquids are disclosed. The apparatuses may be constructed on miniature substrates using conventional semiconductor wafer and packaging processes. The substrates may be mass-produced on wafers, which are then diced to provide individual miniature substrates. High measurement precision, low-manufacturing costs, and other benefits are provided by the present inventions.
摘要:
Disclosed are apparatuses and methods for fast and reliable integration of opto-electric components onto optical routing substrates. Accurate alignment of optical signals to and from the opto-electric components, and short electrical interconnect paths to the components to reduce signal delays to the devices on the components are enabled. In an exemplary embodiment, an attachment area is set out on the optical routing substrate to receive each component. One or more optical waveguides for coupling optical signals with the component are located adjacent to the attachment area. A plurality of conductive pads are located within the attachment area, and are for interconnecting to the component by way of bodies of solder, conductive adhesive, or the like. Interspersed between the conductive pads are a plurality of spacers that set a spacing distance between the attachment area and the opposing surface of the component, resulting in accurate alignment of optical signals.
摘要:
A method of depositing solder on a conductive region of a substrate comprising providing a substrate having a substrate aperture and a coefficient of thermal expansion. A polymeric stencil is also provided such as to have a stencil aperture and a coefficient of thermal expansion which is approximately equal to the coefficient of thermal expansion of the substrate. The method also includes disposing the polymeric stencil on the substrate such that the stencil aperture is aligned with a conductive region; and reflowing the solder paste while the polymeric stencil remains disposed on the substrate. The polymeric stencil is then removed from the substrate essentially without any solder-paste being removed with the polymeric stencil. A method of forming a polymeric stencil for solder-paste printing comprising forming in a polymeric sheet of plurality of apertures having wrinkles in the polymeric sheet in proximity to the plurality of apertures, and compressing opposing surfaces of the apertured polymeric sheet toward each other. The compressed apertured polymeric sheet is then heated and rapidly cooled to remove wrinkles in proximity to the apertures. A stencil for use in a fine pitch bumping process comprising a releasable polymeric sheet having a coefficient of thermal expansion of less than about 4.0 ppm/°C. and a structure defining a pair of apertures spaced from each other at a distance less than about 0.20 mm.
摘要:
A method for electrically coupling electrode pads comprising forming a reflowed solder bump on a first electrode pad supported by a first substrate. The reflowed solder bump includes a solder material having a solder melting temperature. The method further includes forming a second electrode pad on a second substrate. The second electrode pad has an electrode structure defined by at least one converging continuous arcuate surface terminating in an apex and having an electrode material whose melting temperature is greater than the solder melting temperature of the solder material. The solder bump is heated to reflow or to soften the solder material, and subsequently the apex of the second electrode pad is pressed or inserted into the heated solder bump to couple the first electrode pad to the second electrode pad. A method for solder bump reflow comprising pressing or inserting the apex of an electrode into a reflowed solder bumps, and then reflowing solder material of the reflowed solder bump. A semiconductor assembly including a semiconductor device having an electrode pad coupled to a semiconductor substrate and comprising an electrode structure defined by a pair of arcuate surfaces generally tangentially terminating in an apex.
摘要:
An interconnect assembly and a fluxless method for forming the interconnect assembly. The fluxless method includes providing a first semiconductor substrate having a first pad connected thereto. A post is connected to the first pad and includes a length greater than a thickness of the first pad, and a metallic solder disposed on an associated end of the post. A second semiconductor substrate is provided as having a second pad connected thereto. The fluxless method further includes depositing an unfilled polymeric liquid on the second pad, aligning and contacting the metallic solder with the unfilled polymeric liquid, and forcing by pressure the first and second semiconductor substrate toward each while simultaneously heating the metallic solder and the unfilled polymeric liquid to form a metallurgical joint between the second pad and the metallic solder.
摘要:
In accordance with some embodiments of the present disclosure, a chip package is provided. The chip package may include a chip, a substrate, and an interconnect layer disposed between the chip and the substrate. In some embodiments, the interconnect layer may include an array of bonding interconnects configured to provide electrical communication between the chip and a printed circuit board and reinforcement interconnects arranged around an outermost row of the array of bonding interconnects.