Abstract:
In a method for fixing a ferrite to a metal piece such as a pole-piece of a magnetic polarizing circuit of a microwave device, a first step consists in depositing a nonresistive metal on the ferrite face to be fixed. A second step consists in applying a very thin layer of heat-conducting adhesive on the metallized ferrite face and bonding the ferrite to the metal piece, thus ensuring low thermal resistance, very low insertion loss and high power capability.
Abstract:
There is disclosed the preparation of a polymeric based composition comprising a finely divided, particulate inorganic material dispersed in a low molecular weight, low vapor pressure, liquid having a relatively constant viscosity and thixotropic character and capable of being decomposed or pyrolyzed completely to gaseous products at a relatively low temperature without forming a carbonaceous or like residue having a deleterious effect(s) in the application of the composition to a substrate.
Abstract:
A positive temperature coefficient ceramic thermistor element includes a sintered thermosensitive ceramic piece that uses lead barium titanate as a base, as well as metal ohmic electrodes which are positioned on two side surfaces of the thermosensitive ceramic piece. The thermistor element has a microporous channel barrier layer, and includes a glass sealing layer which wraps the outer surface of the thermosensitive ceramic piece, or an organic matter sealant which fills and blocks micro-pores in the surfaces of the metal ohmic electrodes combined on the two side surfaces of the thermosensitive ceramic piece and, at the same time, blocks gaps in the surfaces of areas, that do not have the metal ohmic electrodes, of a peripheral edge of the thermosensitive ceramic piece.
Abstract:
A holding device manufacturing method includes a step of preparing a first joined body which includes a pre-machining ceramic member having a first surface and a fifth surface located opposite the first surface and approximately parallel to the first surface, a base member, and a joining portion disposed between the first surface of the pre-machining ceramic member and a third surface of the base member and joining the pre-machining ceramic member and the base member together. The thickness of the joining portion of the first joined body in a first direction, in which the first surface and the third surface face each other via the joining portion, increases from one end side toward the other end side of the joining portion in a second direction perpendicular to the first direction. The method includes a step of machining the fifth surface of the pre-machining ceramic member in the first joined body.
Abstract:
A wafer holder 10 includes a resin adhesive layer 16 between a ceramic electrostatic chuck 12 and a metal cooling plate 14. The adhesive layer 16 includes a first layer 16a in contact with the electrostatic chuck 12, a second layer 16b in contact with the cooling plate 14, and an intermediate layer 16c located between the first layer 16a and the second layer 16b. Heat resistance of each of the first layer 16a and the intermediate layer 16c is higher than heat resistance of the second layer 16b, flexibility of the second layer 16b is higher than flexibility of each of the first layer 16a and the intermediate layer 16c, and the layers are in hermetic contact with each other.
Abstract:
A method of making a semiconductor manufacturing equipment component, such as an electrostatic chuck, includes an application step of applying a photosensitive metal paste onto a ceramic green sheet, which is to become the body substrate, the photosensitive metal paste being a heating element material; an exposure-and-development step of exposing the photosensitive metal paste, which has been applied onto the ceramic green sheet, to light and developing the photosensitive metal paste to form an intermediate heating element, which is to become the heating element, on the ceramic green sheet; and a firing step of co-firing the ceramic green sheet and the intermediate heating element to form the body substrate and the heating element.
Abstract:
A metal-ceramic substrate for electrical circuits or modules includes at least one first outer metal layer forming one first surface side of the metal-ceramic substrate and at least one second outer metal layer forming one second surface side of the metal-ceramic substrate. The outer metal layers are bonded respectively by two-dimensional bonding with the surface sides of a plate-like substrate body.
Abstract:
A power module package includes a power circuit element, a control circuit element, a lead frame, an aluminum oxide substrate having a heat sink and an insulation layer, and a sealing resin. The control circuit element is electrically connected with the power circuit element to control chips within the power circuit element. The lead frame has external connection terminal leads in its edge and has a first surface to which the power circuit element and the control circuit element are attached and a second surface which is used as a heat transmission path. The heat sink is a plate made of metal such as aluminum and the electrical insulation layer is formed at least on an upper surface of the heat sink and made of aluminum oxide. The electrical insulation layer may be formed over an entire surface of the heat sink. Here, the insulation layer is attached to the second surface by an adhesive, on a region below where the power circuit element is attached, to the first surface of the lead frame. In addition, the sealing resin encloses the power circuit element and the control circuit element, the lead frame, and the metal oxide substrate and exposes the external connection terminals of the lead frame.
Abstract:
Disclosed is a bonding structure, including a heat dissipation substrate, a eutectic layer on the heat dissipation substrate, and a copper layer on the eutectic layer. The thermal dissipation substrate includes aluminum oxide, aluminum nitride, or zirconium oxide. The eutectic layer includes aluminum oxide, aluminum nitride, or zirconium oxide doped with zinc, tin, indium, or combinations thereof.