Abstract:
An exhaust heat recovery device structure that includes: an exhaust heat recovery device main body that is disposed at an inner side of a floor tunnel formed at a vehicle transverse direction central portion of a floor panel, the exhaust heat recovery device main body carrying out heat exchange between cooling water and gas that is generated at an internal combustion engine of a vehicle; and a metal pipe that extends-out from the exhaust heat recovery device main body, the metal pipe being connected to one end of a resin hose whose another end is connected to the internal combustion engine, the connected portion that connects the metal pipe with the resin hose being provided to the metal pipe further toward a vehicle lower side than the exhaust heat recovery device main body, is provided.
Abstract:
A heat insulating structure for an exhaust junction pipe to be disposed in an area in which exhaust gas passages having different respective lengths are merged together comprises a first heat insulation portion that covers and provides heat insulation for at least a portion of one branch part of branch parts that are branched in the exhaust junction pipe; the one branch part forms one exhaust gas passage in a not-yet-merged state of the exhaust gas passages, and forms the one exhaust gas passage having a short length.
Abstract:
An apparatus for cooling intake air temperature of a vehicle may include a vortex tube receiving high pressure air discharged from an intercooler of a vehicle and then separating the high pressure air using centrifugation into high temperature air and low temperature air; a first bypass line connecting the vortex tube with a compressor, allowing the low temperature air to move therethrough, and selectively opened/closed by a first check valve; a second bypass line connecting the vortex tube with an exhaust line of the vehicle and allowing the high temperature air to move therethrough as a second check valve is opened/closed; and a controller controlling to open or close the first and second check valves.
Abstract:
A motor-vehicle engine system comprises a first DOC configured to receive exhaust from an engine and an SCR device coupled downstream of the first DOC in a flow direction of the exhaust. The system further comprises a second DOC coupled downstream of the SCR device. The system takes advantage of hydrocarbon sorption in the SCR catalyst that is a function of temperature to enable reduced hydrocarbon emissions via oxidation at the second DOC.
Abstract:
An exhaust system (10) for a lean-burn internal combustion engine (12) comprises a first substrate monolith (16) comprising a catalyst for oxidizing nitric oxide (NO) comprising a catalytic oxidation component followed downstream by a second substrate monolith (18) which is a wall-flow filter having inlet channels and outlet channels, wherein the inlet channels comprise a NOx absorber catalyst (20) and the outlet channels comprise a catalyst for selective catalytic reduction (22) of nitrogen oxides with nitrogenous reductant.
Abstract:
The invention relates to a method for diagnosing a gas-permeable object, such as a catalyst (15) or a filter, that was removed from an exhaust gas tract connected downstream of an internal combustion engine, in particular removed from a motor vehicle. In order to obtain particularly precise information about a function of the catalyst (15), according to the invention, an end face of the catalyst (15) is subjected to a test medium of a defined composition, such as propane gas or carbon monoxide, through an opening (5) by means of a device (2) in order to measure a catalytic reactivity. At a position located downstream, a concentration of at least one reduced or oxidized constituent of the test medium is measured after having passed the catalyst (15) and/or a temperature of the object after being subjected to the test medium is measured. The invention further relates to a device (1) for diagnosing a gas-permeable object, such as a catalyst (15) or a filter, that was removed from an exhaust gas tract connected downstream of an internal combustion engine, in particular removed from a motor vehicle.
Abstract:
A system includes a turbine combustor, a turbine, an exhaust gas compressor, a flow path, and at least one catalytic converter. The turbine is driven by combustion products from the turbine combustor. The exhaust compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor. The flow path leads from the exhaust gas compressor, through turbine combustor, and into the turbine. The catalytic converter is disposed along the flow path.
Abstract:
A system according to the principles of the present disclosure includes an engine start module and an exhaust valve control module. The engine start module determines when an engine is started based on at least one of an input from an ignition system and the speed of the engine. The exhaust valve control module selectively fully closes an exhaust valve in an exhaust system of the engine when the engine is started to trap exhaust gas in the exhaust system.
Abstract:
Methods and systems are provided for addressing pre-ignition occurring while operating with blow-though air delivery. A variable cam timing device used to provide positive intake to exhaust valve overlap is adjusted in response to an indication of pre-ignition to transiently reduce valve overlap. Pre-ignition mitigating load limiting and enrichment applied during a blow-through mode is adjusted differently from those applied when blow-through air is not being delivered.
Abstract:
In a catalytic converter having a catalyst support that generates heat by being energized, short circuiting due to soot within exhaust is suppressed. A catalyst support is provided in a range of a glass coat layer that is provided on an inner surface of a tube body. A maximum diameter portion of an upstream side reduced diameter member and a maximum diameter portion of a downstream tube are positioned in the range of the glass coat layer.