Abstract:
Scanning Transmission Ion Microscope. The microscope includes a bright helium ion source to generate an ion beam and a focusing electrostatic optical column to focus the ion beam. A translation stage supports a sample to receive the focused ion beam and a detector responds to ions transmitted through the sample to generate a signal from which properties of the sample may be displayed.
Abstract:
A flood gun 10 for charge neutralization of an analysis region Ra of a sample S downstream of the flood gun, comprising: a first source 30 of electrons; a second source 50 of positively charged particles; and an extraction and focusing assembly 60,64, arranged to: (i) extract a first, electron beam from the first source and focus the first beam to a first flood area Ae at the analysis region; and (ii) extract a second, positive particle beam from the second source and focus the second beam to a second flood area Ai at the analysis region. The electron beam and the positive particle beam may both be extracted and focused simultaneously, in a single mode of operation or, alternately, in a dual mode of operation. A corresponding method of providing charge neutralization and a spectroscopic system for secondary particle emission analysis are disclosed.
Abstract:
A scanning tunneling microscope having a scanner driven in three dimensions. A conducting tip is attached to the front end of the scanner. A voltage is applied between the tip and a specimen. Movement of the tip is controlled so that the resulting tunneling current is maintained constant. A scanning tunneling microscope (STM) image is created from a control signal for controlling the movement of the tip. The microscope is equipped with a secondary electron detector for detecting secondary electrons emitted from the specimen when the voltage applied between the tip and the specimen is increased. A secondary electron image originating from the same field of view as the STM image is derived.
Abstract:
In locally reactive etching by irradiating to a multilayered workpiece reactive beam generated by extracting the reactant gas ionized or by irradiating such focussing beam as ion beam, electron beam or laser beam to the multilayered workpiece in an atmosphere of reactant gas; each layer of a multilayered device comprising a plurality of layers formed on a substrate can be accurately and quickly eteched by detecting the change of the material of the layer currently being etched and after detecting the change of material, switching reactant gas to be ionized or atmospheric reactant gas to one complying with the material of the layer currently being etched. This multilayered device micro etching method can be readily put into practice by a multilayered device micro etching system further comprising means for detecting the change of the material of layer to be etched and means for switching and supplying a plurality of reactant gases, in a micro etching appratus for performing locally rective etching.
Abstract:
A liquid metal field ionization source is used in conjunction with a three element asymmetric lens system to provide an ion gun having greater magnitude beam currents focused on a smaller spot size than has been previously possible for intermediate energy beams. An ultra-clean emitter surface is achieved by means of an argon sputtering and/or plasma etching process applied to the emitter surface before liquid metal is applied to the emitter surface to ensure uniform and sufficient flow of liquid metal to the apex of the emitter. The three element asymmetric lens system has a very low chromatic aberration coefficient, enabling precise focusing of beams with large energy spreads. For beam accelerating ratios in the range from 0.2 to 6, the ion gun produces very high current densities in beams focused on very small spot areas, despite the relatively large energy spread of beams produced by liquid metal ionization sources. The energy spread of the ion beam is minimized by operating the emitter at a voltage close to the onset voltage and at a temperature close to the melting point of the liquid metal.
Abstract:
The invention relates to a method, a device and a system for the treatment of biological frozen samples using plasma focused ion beams (FIB). The samples can then be used for mass spectrometry (MS), genomics, such as gene sequencing analysis or next generation sequencing (NGS) analysis, and proteomics. The present invention particularly relates to a method of treatment of at least one biological sample. This method is particularly used for high performance microscopy, proteomics analytics, sequencing, such as NGS etc. According to the present invention the method comprises the steps of providing at least one biological sample in frozen form. The milling treats at least one part of the sample by a plasma ion beam comprising at least one of an O+ and/or a Xe+ plasma.
Abstract:
According to an embodiment of the present invention, an ion beam apparatus switches between an operation mode of performing irradiation with an ion beam most including H3+ ions and an operation mode of performing irradiation with an ion beam most including ions heavier than the H3+.
Abstract:
A focused ion beam apparatus is equipped with a gas field ion source that can produce a focused ion beam for a long period of time by stably and continuously emitting ions from the gas field ion source having high luminance, along an optical axis of an ion-optical system for a long period of time. The gas field ion source has an emitter for emitting ions, the emitter having a sharpened end part made of iridium fixed to a cylinder-shaped base part made of dissimilar wire.