Abstract:
A high precision system for machining substrates by means of an energy beam includes real time digital signal processor control and a deflection system providing control, within a predetermined field of the substrate, of the angle at which the beam machines the substrate. An electron beam is used in a vacuum chamber in a preferred embodiment. The system also includes an x-y table for positioning the substrate and may have provision for detecting the x-y position and angular misregistration of the substrate. Dynamic forms and stigmator control may be used to produce a uniform beam within the field. The system allows a high speed vector machining process, which optimizes the overall system throughput by minimizing the settling time of the deflection system.
Abstract:
In one embodiment, A charged particle beam drawing apparatus includes an irradiation amount resetting processing circuitry changing the irradiation amount in the shot data to the irradiation amount lower limit value when the irradiation amount defined in the shot data is less than the irradiation amount lower limit value, a shot size adjustment processing circuitry changing the shot size defined in the shot data, based on an amount of the change in the irradiation amount, a shot position adjustment processing circuitry changing the shot position defined in the shot data, based on an amount of the change in the shot size, and a drawing device drawing a pattern by irradiating the substrate with the charged particle beam, using the shot data in which the irradiation amount, the shot size, and the shot position have been changed.
Abstract:
A system, apparatus, and method for determining position and two angles of incidence of an ion beam to a surface of a workpiece is provided. A measurement apparatus having an elongate first and second sensor is coupled to a translation mechanism, wherein the first sensor extends in a first direction perpendicular to the translation, and wherein the second sensor extends at an oblique angle to the first sensor. The first and second elongate sensors sense one or more characteristics of the ion beam as the first and second sensors pass through the ion beam at a respective first time and a second time, and a controller is operable to determine a position and first and second angle of incidence of the ion beam, based, at least in part, on the one or more characteristics of the ion beam sensed by the first sensor and second sensor at the first and second times.
Abstract:
A technique for ion beam angle spread control for advance applications is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam angle spread control for advanced applications. The method may comprise directing one or more ion beams at a substrate surface at two or more different incident angles. The method may also comprise varying an ion beam dose associated with at least one of the one or more ion beams based at least in part on the two or more incident angles, thereby exposing the substrate surface to a controlled ion beam angle-dose distribution.
Abstract:
A semiconductor manufacturing apparatus includes: a calculation unit having at least one computer for processing semiconductor design information; a control unit for controlling radiation of an electron in accordance with a processing result of the semiconductor design information; a writing unit for radiating an electron in accordance with instructions of the control unit; and at least one storage device. The semiconductor manufacturing apparatus permits a communication between the storage device, the calculation unit, the control unit, and the writing unit. The semiconductor manufacturing apparatus further includes a communication pass through which the storage device can be controlled.
Abstract:
A technique for ion beam angle spread control for advance applications is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam angle spread control for advanced applications. The method may comprise directing one or more ion beams at a substrate surface at two or more different incident angles. The method may also comprise varying an ion beam dose associated with at least one of the one or more ion beams based at least in part on the two or more incident angles, thereby exposing the substrate surface to a controlled ion beam angle-dose distribution.
Abstract:
An ion implantation simulator that computes an ion density distribution at high speed and with high accuracy based on a beam dispersion phenomenon in an ion implantation process. The ion implantation simulator is provided with the beam dispersion approximate function storage section 121, which stores a beam dispersion approximate function that is obtained through approximation of ion beam dispersion by using a predetermined function; a beam intensity computing section 131, which computes an area surface beam intensity that indicates an intensity of the ion beam on a surface of an implanted area by using the beam dispersion approximate function; and an ion density distribution computing section 132, which computes the density distribution of the ion, which is implanted by the ion beam into the device through the surface of the implanted area, by using the area surface beam intensity.
Abstract:
A method for optimizing an ion implantation, wherein a substrate is scanned in two dimensions through an ion beam. The method provides a process recipe comprising one or more of a current of an ion beam, a dosage of ions, and a number of substrate passes through the beam in a slow scan direction. The beam is profiled based on the process recipe, and a size of the beam is determined. One of a plurality of differing scan speeds in a fast scan direction is selected, based on a desired uniformity of the implantation and the process recipe. The process recipe is controlled, based on one or more of the desired uniformity, a throughput time for the substrate, a desired minimum ion beam current, and one or more substrate conditions. One of a plurality of speeds in a slow scan direction is selected, based on the dosage of the implantation.
Abstract:
An apparatus for performing automated in-situ lift-out of a sample from a specimen includes a computer having a memory with computer-readable instructions, a stage for a specimen and a nano-manipulator. The stage and the nano-manipulator are controlled by motion controllers connected to the computer. The nano-manipulator has a probe tip for attachment to samples excised from the specimen. The computer-readable instructions include instructions to cause the stage motion controllers and the nano-manipulator motion controllers, as well as an ion-beam source, to automatically perform in-situ lift-out of a sample from the specimen.
Abstract:
We disclose a gas injection system having at least one crucible, each crucible holding at least one deposition constituent; at least one transfer tube, the number of transfer tubes corresponding to the number of crucibles, each transfer tube being connected to a corresponding crucible. There is at least one metering valve, the number of metering valves corresponding to the number of transfer tubes, each metering valve being connected to a corresponding transfer tube so that the metering valve can measure and adjust vapor flow in the corresponding transfer tube. A sensor is provided capable of sensing reactions between deposition constituents and a focused ion beam A computer is connected to receive the output of the sensor; the computer is also connected to each metering valve to control the operation of the valve, and the computer is programmed to send control signals to each metering valve to control the operation of the valve; the control signals being computed responsive to feedback from the output of the sensor.