Abstract:
A semi-floating gate transistor is implemented as a vertical FET built on a silicon substrate, wherein the source, drain, and channel are vertically aligned, on top of one another. Current flow between the source and the drain is influenced by a control gate and a semi-floating gate. Front side contacts can be made to each one of the source, drain, and control gate terminals of the vertical semi-floating gate transistor. The vertical semi-floating gate FET further includes a vertical tunneling FET and a vertical diode. Fabrication of the vertical semi-floating gate FET is compatible with conventional CMOS manufacturing processes, including a replacement metal gate process. Low-power operation allows the vertical semi-floating gate FET to provide a high current density compared with conventional planar devices.
Abstract:
A tunneling field effect transistor is formed from a fin of semiconductor material on a support substrate. The fin of semiconductor material includes a source region, a drain region and a channel region between the source region and drain region. A gate electrode straddles over the fin at the channel region. Sidewall spacers are provided on each side of the gate electrode. The source of the transistor is made from an epitaxial germanium content source region grown from the source region of the fin and doped with a first conductivity type. The drain of the transistor is made from an epitaxial silicon content drain region grown from the drain region of the fin and doped with a second conductivity type.
Abstract:
A semiconductor device may include a multi-layer interconnect board having in stacked relation a lower conductive layer, a dielectric layer, and an upper conductive layer. The dielectric layer may have a recess formed with a bottom and sloping sidewall extending upwardly from the bottom. The upper conductive layer may include upper conductive traces extending across the sloping sidewall, and the lower conductive layer may include lower conductive traces. The semiconductor device may include vias extending between the lower and upper conductive layers, an IC carried by the multi-layer interconnect board in the recess, bond wires coupling upper conductive traces to the IC, and encapsulation material adjacent the IC and adjacent portions of the multi-layer interconnect board.
Abstract:
The addition of high throughput capability elements to beacon frames and peer link action frames in wireless mesh networks enable the utilization of desirable features without further modifications to the network. Rules can be established for high throughput mesh point protection in a mesh network, Space-time Block Code (STBC) operations and 20/40 MHz operation selections. However, features such as PSMP (power save multi-poll) and PCO (phased coexistence operations) are barred from implementation to prevent collisions.
Abstract:
Fabricating a semiconductor device includes providing a strained semiconductor material (SSM) layer disposed on a dielectric layer, forming a first plurality of fins on the SSOI structure, at least one fin of the first plurality of fins is in a nFET region and at least one fin is in a pFET region, etching portions of the dielectric layer under portions of the SSM layer of the at least one fin in the pFET region, filling areas cleared by the etching, forming a second plurality of fins from the at least one fin in the nFET region such that each fin comprises a portion of the SSM layer disposed on the dielectric layer, and forming a third plurality of fins from the at least one fin in the pFET region such that each fin comprises a portion of the SSM layer disposed on a flowable oxide.
Abstract:
A technique relates to fabricating a macro for measurements utilized in dual spacer, dual epitaxial transistor devices. The macro is fabricated according to a fabrication process. The macro is a test layout of a semiconductor structure having n-p bumps at junctions between NFET areas and PFET areas. Optical critical dimension (OCD) spectroscopy is performed to obtain the measurements of the n-p bumps on the macro. An amount of chemical mechanical polishing is determined to remove the n-p bumps on the macro based on the measurements of the n-p bumps on the macro. Chemical mechanical polishing is performed to remove the n-p bumps on the macro. The amount previously determined for the macro is utilized to perform chemical mechanical polishing for each of the dual spacer, dual epitaxial layer transistor devices having been fabricated under the fabrication process of the macro in which the fabrication process produced the n-p bumps.
Abstract:
An embodiment of a motor controller includes a motor driver and a signal conditioner. The motor driver is operable to generate a motor-coil drive signal having a first component at a first frequency, and the signal conditioner is coupled to the motor driver and is operable to alter the first component. For example, if the first component of the motor-coil drive signal causes the motor to audibly vibrate (e.g., “whine”), then the signal conditioner may alter the amplitude or phase of the first component to reduce the vibration noise to below a threshold level.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
Abstract:
Method of making at least one transistor strained channel semiconducting structure, comprising steps to form a sacrificial gate block and insulating spacers arranged in contact with the lateral faces of the sacrificial gate block, form sacrificial regions in contact with the lateral faces of said semiconducting zone, said sacrificial regions being configured so as to apply a strain on said semiconducting zone, remove said sacrificial gate block between said insulating spacers, replace said sacrificial gate block by a replacement gate block between said insulating spacers, remove said sacrificial regions, and replace said sacrificial regions by replacement regions in contact with the lateral faces of said semiconducting zone, on a semiconducting zone that will form a transistor channel region.
Abstract:
An electronic device may include system and serial peripheral interface (SPI) clocks, and a host interface each switchable between active and inactive states, a serial controller coupled to the system clock, and a memory. A slave controller may generate a request active signal based upon a transaction request from a host and causing each of the system clock, SPI clock, and host interface into the active state, store request data in the memory, and switch the host interface to the inactive state based upon the request data being stored. The serial controller may process the request based upon the request active signal, and generate a request complete signal based upon the request being processed. The slave controller may switch the system clock to the inactive state based upon the request complete signal. The SPI clock may be switched to the inactive state based upon the request complete signal.