Abstract:
An LED illumination apparatus according to the present invention includes at least one connector and a lighting drive circuit. The connector is connected to an insertable and removable card-type LED illumination source, which includes multiple LEDs that have been mounted on one surface of a substrate. The lighting drive circuit is electrically connected to the card-type LED illumination source by way of the connector. The card-type LED illumination source preferably includes a metal base substrate and the multiple LEDs that have been mounted on one surface of the metal base substrate. The back surface of the metal base substrate, including no LEDs thereon, thermally contacts with a portion of the illumination apparatus. A feeder terminal to be electrically connected to the connector is provided on the surface of the metal base substrate on which the LEDs are provided.
Abstract:
An LED lamp includes a substrate, an LED chip, and a resin portion. The LED chip is flip-chip bonded to the substrate. The resin portion covers the LED chip and includes at least one type of phosphor that transforms the emission of the LED chip into light having a longer wavelength than the emission. In this LED lamp, the resin portion has at least one side surface. The side surface is separated from another surface that can reflect the outgoing light of the resin portion, surrounds the side surfaces of the LED chip and is curved at least partially.
Abstract:
A wiring board used for mounting an LED bare chip capable of firmly bonding the LED bare chip and improving yield. In a printed wiring board 2, a distance D between wiring patterns 81 and 85 disposed so as to oppose each other is the smallest at a position nearest to a center point (G) of an LED chip 14 disposed at a designed location, and increases with an increasing distance from the point G. In addition, pattern edges 83 and 87 of the wiring patterns 81 and 85 recede in the direction of widening the distance D as a distance from the center point G increases with respect to electrode edges 148 and 149 of the LED chip 14.
Abstract:
An LED illumination apparatus includes at least one connector and a lighting drive circuit. The connector is connected to an insertable and removable card-type LED illumination source, which includes multiple LEDs that have been mounted on one surface of a substrate. The lighting drive circuit is electrically connected to the card-type LED illumination source by way of the connector. The card-type LED illumination source preferably includes a metal base substrate and the multiple LEDs that have been mounted on one surface of the metal base substrate. The back surface of the metal base substrate, including no LEDs thereon, thermally contacts with a portion of the illumination apparatus. A feeder terminal to be electrically connected to the connector is provided on the surface of the metal base substrate on which the LEDs are provided.
Abstract:
An LED lamp includes a substrate, an LED chip, and a resin portion. The LED chip is flip-chip bonded to the substrate. The resin portion covers the LED chip and includes at least one type of phosphor that transforms the emission of the LED chip into light having a longer wavelength than the emission. In this LED lamp, the resin portion has at least one side surface. The side surface is separated from another surface that can reflect the outgoing light of the resin portion, surrounds the side surfaces of the LED chip and is curved at least partially.
Abstract:
An LED illumination apparatus includes at least one connector and a lighting drive circuit. The connector is connected to an insertable and removable card-type LED illumination source, which includes multiple LEDs that have been mounted on one surface of a substrate. The lighting drive circuit is electrically connected to the card-type LED illumination source by way of the connector. The card-type LED illumination source preferably includes a metal base substrate and the multiple LEDs that have been mounted on one surface of the metal base substrate. The back surface of the metal base substrate, including no LEDs thereon, thermally contacts with a portion of the illumination apparatus. A feeder terminal to be electrically connected to the connector is provided on the surface of the metal base substrate on which the LEDs are provided.
Abstract:
An LED lamp includes at least one LED chip and a wavelength converting portion including a phosphor for transforming the emission of the LED chip into light having a longer wavelength than that of the emission. The LED lamp further includes filtering member. The filtering member is designed such that the spectral transmittance thereof becomes lower in at least a portion of the wavelength range of 550 nm to 605 nm than in the remaining visible radiation range.