摘要:
The present invention generally provides a method and apparatus for cleaning a showerhead of a deposition chamber, such as a metal organic chemical vapor deposition (MOCVD) chamber. In one embodiment, the showerhead is cleaned without exposing the chamber to the atmosphere outside of the chamber (i.e., in situ cleaning). In one embodiment, flow of liquid coolant through a cooling system that is in fluid communication with the showerhead is redirected to bypass the showerhead, and the liquid coolant is drained from the showerhead. In one embodiment, any remaining coolant is flushed from the showerhead via a pressurized gas source. In one embodiment, the showerhead is then heated to an appropriate cleaning temperature. In one embodiment, the flow of liquid coolant from the cooling system is then redirected to the showerhead and the system is adjusted for continued processing. Thus, the entire showerhead cleaning process is performed with minimal change to the flow of coolant through the cooling system.
摘要:
A method of depositing a high quality low defect single crystalline Group III-Nitride film. A patterned substrate having a plurality of features with inclined sidewalls separated by spaces is provided. A Group III-Nitride film is deposited by a hydride vapor phase epitaxy (HVPE) process over the patterned substrate. The HVPE deposition process forms a Group III-Nitride film having a first crystal orientation in the spaces between features and a second different crystal orientation on the inclined sidewalls. The first crystal orientation in the spaces subsequently overgrows the second crystal orientation on the sidewalls and in the process turns over and terminates treading dislocations formed in the first crystal orientation.
摘要:
Embodiments disclosed herein generally relate to an HVPE chamber. The chamber may have two separate precursor sources coupled thereto to permit two separate layers to be deposited. For example, a gallium source and a separate aluminum source may be coupled to the processing chamber to permit gallium nitride and aluminum nitride to be separately deposited onto a substrate in the same processing chamber. The nitrogen may be introduced to the processing chamber at a separate location from the gallium and the aluminum and at a lower temperature. The different temperatures causes the gases to mix together, react and deposit on the substrate with little or no deposition on the chamber walls.
摘要:
A method and apparatus that may be utilized in deposition processes, such as hydride vapor phase epitaxial (HVPE) deposition of metal nitride films, are provided. A first set of passages may introduce a metal containing precursor gas. A second set of passages may provide a nitrogen-containing precursor gas. The first and second sets of passages may be interspersed in an effort to separate the metal containing precursor gas and nitrogen-containing precursor gas until they reach a substrate. An inert gas may also be flowed down through the passages to help keep separation and limit reaction at or near the passages, thereby preventing unwanted deposition on the passages.
摘要:
Embodiments of the invention generally relate to methods for forming Group III-V materials by a hydride vapor phase epitaxy (HVPE) process. In one embodiment, a method for forming a gallium nitride material on a substrate within a processing chamber is provided which includes heating a metallic source to form a heated metallic source, wherein the heated metallic source contains gallium, aluminum, indium, alloys thereof, or combinations thereof, exposing the heated metallic source to chlorine gas while forming a metallic chloride gas, exposing the substrate to the metallic chloride gas and a nitrogen precursor gas while forming a metal nitride layer on the substrate during the HVPE process. The method further provides exposing the substrate to chlorine gas during a pretreatment process prior to forming the metal nitride layer. In one example, the exhaust conduit of the processing chamber is heated to about 200° C. or less during the pretreatment process.
摘要:
A semiconductor device and method for forming the same includes a silicon (111) single crystal substrate, and an epitaxial boron phosphide (BP) layer disposed on the substrate. A group III-nitride semiconductor epitaxial layer is disposed on the BP epitaxial layer.
摘要:
The subject invention pertains to a method and device for producing large area single crystalline III-V nitride compound semiconductor substrates with a composition AlxInyGa1-x-y N (where 0≦x≦1, 0≦y≦1, and 0≦x+y≦1). In a specific embodiment, GaN substrates, with low dislocation densities (˜107 cm2) can be produced. These crystalline III-V substrates can be used to fabricate lasers and transistors. Large area free standing single crystals of III-V compounds, for example GaN, can be produced in accordance with the subject invention. By utilizing the rapid growth rates afforded by hydride vapor phase epitaxy (HVPE) and growing on lattice matching orthorhombic structure oxide substrates, good quality III-V crystals can be grown. Examples of oxide substrates include LiGaO2, LiAlO2, MgAlScO4, Al2MgO4, and LiNdO2. The subject invention relates to a method and apparatus, for the deposition of III-V compounds, which can alternate between MOVPE and HVPE, combining the advantages of both. In particular, the subject hybrid reactor can go back and forth between MOVPE and HVPE in situ so that the substrate does not have to be transported between reactor apparatus and, therefore, cooled between the performance of different growth techniques.
摘要翻译:本发明涉及一种用于制备具有组成Al x In y Ga 1-xy N(其中0≤x≤1,0<= y <= 1,和0≤x≤1)的大面积单晶III-V族氮化物化合物半导体衬底的方法和装置, = x + y <= 1)。 在具体实施方案中,可以生产具有低位错密度(〜107cm 2)的GaN衬底。 这些晶体III-V衬底可用于制造激光器和晶体管。 根据本发明可以制备III-V族化合物的大面积自立单晶,例如GaN。 通过利用由氢化物气相外延(HVPE)提供的快速生长速率并在晶格匹配正交结构氧化物衬底上生长,可以生长出优质的III-V晶体。 氧化物基板的实例包括LiGaO 2,LiAlO 2,MgAlScO 4,Al 2 MgO 4和LiNdO 2。 本发明涉及用于沉积III-V化合物的方法和装置,其可以在MOVPE和HVPE之间交替,结合两者的优点。 特别地,目标混合反应器可以在MOVPE和HVPE之间来回地进行原位处理,使得基板不必在反应器装置之间传输,因此在不同生长技术的性能之间进行冷却。