Abstract:
In one embodiment, a composition (10) to be mixed with a molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (12), the ceramic reinforcing filler not being wettable by molten aluminum and/or not being chemically stable in molten aluminum, the ceramic reinforcing filler being coated with a ceramic material, the ceramic material being wettable by and chemically stable in molten aluminum. In a related embodiment, a composition (20) to make a porous preform to be infiltrated by molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (23), the ceramic reinforcing filler not being wettable by molten aluminum, the ceramic reinforcing filler being coated with a ceramic material (22) and optionally with a metal (21) such as nickel, the ceramic material being wettable by molten aluminum. The ceramic material can be coated on the ceramic reinforcing filler by a vacuum deposition technique such as vacuum sputtering.
Abstract:
An aluminum-boron-carbon (ABC) ceramic-metal composite bonded to a metal or metal-ceramic composite other than ABC composite is made by forming a porous body comprised of particulates being comprised of a boron-carbon compound that has a particulate layer of titanium diboride powder on the surface of the porous body. The porous body is infiltrated with aluminum or alloy thereof resulting in the simultaneous infiltration of the TiB2 layer, where the layer has an aluminum metal content that is at least about 10 percentage points greater by volume than the (ABC) composite. The ABC composite is then fused to a metal or metal-ceramic body through the infiltrated layer of titanium diboride, wherein the metal-ceramic body is a composite other than an aluminum-boron-carbon composite.
Abstract:
An improved aluminum-boron carbide (ABC) composite has been discovered that is comprised of a continuous network of AlB24C4 and boron carbide grains having therein other isolated aluminum-boron carbide reactive phases and at most 2% by volume of isolated metal. The improved ABC composite may be formed by forming boron carbide particulates into a porous body that has a porosity of at most about 35%, where the boron particulates have been heat treated to a temperature of 1200° C. to 1800° C., infiltrating the porous body with aluminum or aluminum alloy until an infiltrated aluminum-boron carbide body is formed that has at most about 1% porosity, heat treating the infiltrated body for at least 25 hours at 1000° C. to 1100° C. to form an aluminum boron carbide composite having a continuous network of AlB24C4 and boron carbide, and subsequently heat-treating to 700° C. to 900° C. to form the improved aluminum boron carbide composite.
Abstract:
Porous composites of mullite and cordierite are formed by firing an acicular mullite body in the presence of a magnesium source and a silicon source. In some variations of the process, the magnesium and silicon sources are present when the acicular mullite body is formed. In other variations, the magnesium source and the silicon source are applied to a previously-formed acicular mullite body. Surprisingly, the composites have coefficients of linear thermal expansion that are intermediate to those of mullite and cordierite alone, and have higher fracture strengths than cordierite at a similar porosity. Some of the cordierite forms at grain boundaries and/or points of intersection between mullite needles, rather than merely coating the needles. The presence of magnesium and silicon sources during acicular mullite formation does not significantly affect the ability to produce a highly porous network of mullite needles.
Abstract:
An improved aluminum-boron carbide (ABC) composite has been discovered that is comprised of a continuous network of AlB24C4 and boron carbide grains having therein other isolated aluminum-boron carbide reactive phases and at most 2% by volume of isolated metal. The improved ABC composite may be formed by forming boron carbide particulates into a porous body that has a porosity of at most about 35%, where the boron particulates have been heat treated to a temperature of 1200° C. to 1800° C., infiltrating the porous body with aluminum or aluminum alloy until an infiltrated aluminum-boron carbide body is formed that has at most about 1% porosity, heat treating the infiltrated body for at least 25 hours at 1000° C. to 1100° C. to form an aluminum boron carbide composite having a continuous network of AlB24C4 and boron carbide, and subsequently heat-treating to 700° C. to 900° C. to form the improved aluminum boron carbide composite.
Abstract:
A porous mullite composition is made by forming a mixture of one or more precursor compounds having the elements present in mullite (e.g., clay, alumina, silica) and a property enhancing compound. The property enhancing compound is a compound having an element selected from the group consisting of Mg, Ca, Fe, Na, K, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, B, Y, Sc, La and combination thereof. The mixture is shaped and to form a porous green shape which is heated under an atmosphere having a fluorine containing gas to a temperature sufficient to form a mullite composition comprised substantially of acicular mullite grains that are essentially chemically bound.
Abstract:
A method of forming a porous mullite composition of acicular mullite grains having improved properties is described, where the mullite is formed at some time in the presence of a fluorine containing gas. For example, it has been discovered that improved properties may result from heating the mullite to a high temperature in an atmosphere selected from the group consisting of water vapor, oxygen, an inert gas or mixtures thereof or forming the mullite composition from precursors having an AL/Si ratio of at most 2.95.
Abstract:
A method of coating a fluidizable material onto a surface of a substrate, wherein the substrate is not wettable by the fluidizable material includes depositing a layer of powder particles on the surface of the substrate, the powder particles being wettable by the fluidizable material; contacting the fluidizable material to the layer of powder particles; and allowing the fluidizable material to wick between the powder particles and to contact the surface of the substrate.The method of the invention provides a method which requires little or no binders or organic solvents, is applicable to many different ceramic-metal formulations, allows easy control of the thickness of the tape, forms fairly dense tapes so that little or no shrinkage occurs upon densification at elevated temperatures, and does not require undesirably high processing temperatures.
Abstract:
A hard drive disk substrate is formed of a multi-phase ceramic-based material having at least two phases with amorphous phases being present in an amount less than about 1 volume percent based on the volume of the ceramic-based material or at least one phase being free metal. A process for producing the ceramic-based disk substrate is produced by forming a flat disk of a porous ceramic and then infiltrating the porous ceramic with a metal whereby a multi-phase ceramic-based computer hard drive disk is produced. Additionally, a step of passivating the porous ceramic by elevating it to a temperature of about 1300.degree. to about 1800.degree. C. before the infiltrating step may be performed, such that the surfaces are passivated and the reaction kinetics can be controlled during the infiltrating step. A preferred composite material is made of a multi-phase boron carbide composite material including grains having peaks with an average roughness value, Ra, of between about 1 to about 200.ANG., the roughness value being formed in situ by causing a micro hardness gradient of between about 19 and about 3200 Kg/mm.sup.2 in the various phases of the multi-phase boron carbide composite material.
Abstract:
A process for preparing a self-reinforced silicon nitride ceramic body of high fracture toughness comprising hot-pressing a powder mixture containing silicon nitride, a densification aid such as sodium oxide, a conversion aid such as lanthanum oxide and a compound, such as gallium oxide, which enhances growth of .beta.-silicon nitride whiskers-under conditions such that densification and the in situ formation of .beta.-silicon nitride whiskers having a high aspect ratio occur. A novel silicon nitride ceramic of high fracture toughness and high fracture strength is disclosed comprising a .beta.-silicon nitride crystalline phase wherein at least about 20 volume percent of the phase is in the form of whiskers having an average aspect ratio of at least about 2.5; a glassy second phase containing the densificaton aid, the conversion aid, the compound which enhances growth of .beta.-silicon nitride whiskers, and an amount of silica; and not greater than about 10 weight percent of the total weight as other phases. The glassy phase may also include a minor amount, e.g., up to 5.0 weight percent, based upon total weight of the ceramic, of aluminum nitride or boron nitride. The glassy phase optionally includes an amount of a secondary reinforcing material such as silicon carbide whiskers.