Abstract:
Submount based surface mount design (SMD) light emitter components and related methods are disclosed. In some aspects, light emitter components can include a submount with a first side having a first surface area, first and second electrical contacts disposed on the first side of the submount, and at least one light emitter chip on the first side. In some aspects, the electrical contact area can be less than half of the first surface area of the first side of the submount. Components disclosed herein can include low profile parts or domes where a ratio between a dome height and a dome width is less than 0.5. A method of providing components can include providing a panel of material and LED chips, dispensing a liquid encapsulant material over the panel, and singulating the panel into individual submount based components after the encapsulant material has hardened.
Abstract:
Light emitting diode (LED) components and related methods are disclosed. LED components include a submount, at least one LED chip on a first surface of the submount, and a light permeable structure or dam. The light permeable dam can provide a component having a viewing angle that is greater than 115°. A method of providing an LED component includes providing a non-metallic submount, attaching at least one LED chip to a first surface of the submount, and dispensing a light permeable dam over the first surface of the submount about the at least one LED chip thereby providing a component having a viewing angle that is greater than 115°.
Abstract:
Light emitting diode (LED) components and related methods are disclosed. LED components include a submount, at least one LED chip on a first surface of the submount, and a non-reflective, light permeable structure or dam. The light permeable dam can provide a component having a viewing angle that is greater than 115°. A method of providing an LED component includes providing a non-metallic submount, attaching at least one LED chip to a first surface of the submount, and dispensing a non-reflective, light permeable dam over the first surface of the submount about the at least one LED chip thereby providing a component having a viewing angle that is greater than 115°.
Abstract:
Light emitting diode (LED) devices, components and systems are provided. Improved substrates for LEDs and LED devices are provided, with one or more dielectric layers over a reflective layer sufficient to minimize or eliminate damage of the dielectric layer(s). More stable and efficient LED devices can be produced using such improved substrates. LED devices, and methods of making the same, are also provided wherein LED chips are embedded in fill material to attach the LEDs to a substrate and increase light reflectivity.
Abstract:
Light emitter components and methods having improved electrical contacts and related methods are disclosed. In one embodiment, a light emitter component can include a submount, at least one light emitter chip on the submount, and at least one electrical contact disposed along portions of at least three external surfaces of the submount. The at least one electrical contact can be electrically connected to the at least one light emitter chip.
Abstract:
Devices, components and methods containing one or more light emitter devices, such as light emitting diodes (LEDs) or LED chips, are disclosed. In one aspect, a light emitter device component can include a metallic substrate with a mirrored surface, one or more light emitter devices mounted directly or indirectly on the mirrored surface, and one or more electrical components mounted on the top surface and electrically coupled to the one or more light emitter devices, wherein the one or more electrical components can be spaced from the mirrored metal substrate by one or more non-metallic layers. Components disclosed herein can result in improved thermal management and light output.
Abstract:
Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
Abstract:
Light emitter components and related methods are provided. In some aspects, light emitter components and related methods include a ceramic submount having a reflective surface. Light emitter components and related methods can include light emitter chips disposed over the reflective surface. Each light emitter chip can include a sapphire substrate, an epi area disposed over the sapphire substrate, and first and second electrical contacts disposed over the epi area. The first and second electrical contacts may face the reflective surface. A ratio between a combined epi area of the plurality of light emitter chips and a surface area of the reflective surface may be at least 0.4 or more, and a ratio between a combined planar surface area of the plurality of light emitter chips and a planar surface area of the reflective surface may be at least approximately 0.25 or more.
Abstract:
A Light Emitting Diode (LED) component includes a lead frame and an LED that is electrically connected to the lead frame without wire bonds, using a solder layer. The lead frame includes a metal anode pad, a metal cathode pad and a plastic cup. The LED die includes LED die anode and cathode contacts with a solder layer on them. The metal anode pad, metal cathode pad, plastic cup and/or the solder layer are configured to facilitate the direct die attach of the LED die to the lead frame without wire bonds. Related fabrication methods are also described.
Abstract:
A Light Emitting Diode (LED) component includes a lead frame and an LED that is electrically connected to the lead frame without wire bonds, using a solder layer. The lead frame includes a metal anode pad, a metal cathode pad and a plastic cup. The LED die includes LED die anode and cathode contacts with a solder layer on them. The metal anode pad, metal cathode pad, plastic cup and/or the solder layer are configured to facilitate the direct die attach of the LED die to the lead frame without wire bonds. Related fabrication methods are also described.