Abstract:
A photovoltaic device and method include depositing a metal film on a substrate layer. The metal film is annealed to form islands of the metal film on the substrate layer. The substrate layer is etched using the islands as an etch mask to form pillars in the substrate layer.
Abstract:
A photovoltaic device includes a crystalline substrate having a first dopant conductivity, an interdigitated back contact and a front surface field structure. The front surface field structure includes a crystalline layer formed on the substrate and a noncrystalline layer formed on the crystalline layer. The crystalline layer and the noncrystalline layer are doped with dopants having a same dopant conductivity as the substrate. Methods are also disclosed.
Abstract:
A method for fabricating a photovoltaic device includes applying a diblock copolymer layer on a substrate and removing a first polymer material from the diblock copolymer layer to form a plurality of distributed pores. A pattern forming layer is deposited on a remaining surface of the diblock copolymer layer and in the pores in contact with the substrate. The diblock copolymer layer is lifted off and portions of the pattern forming layer are left in contact with the substrate. The substrate is etched using the pattern forming layer to protect portions of the substrate to form pillars in the substrate such that the pillars provide a radiation absorbing structure in the photovoltaic device.
Abstract:
A device and method for reducing degradation in a photovoltaic device includes adjusting a band offset of the device during one or more of forming an electrode, forming a first doped layer or forming an intrinsic layer. The adjusting reduces a band offset between one or more of the electrode, the first doped layer and the intrinsic layer to reduce light-induced degradation of the device. A second doped layer is formed on the intrinsic layer.
Abstract:
A method for fabricating a device with integrated photovoltaic cells includes supporting a semiconductor substrate on a first handle substrate and doping the semiconductor substrate to form doped alternating regions with opposite conductivity. A doped layer is formed over a first side the semiconductor substrate. A conductive material is patterned over the doped layer to form conductive islands such that the conductive islands are aligned with the alternating regions to define a plurality of photovoltaic cells connected in series on a monolithic structure.
Abstract:
A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
Abstract:
Hemispheres and spheres are formed and employed for a plurality of applications. Hemispheres are employed to form a substrate having an upper surface and a lower surface. The upper surface includes peaks of pillars which have a base attached to the lower surface. The peaks have a density defined at the upper surface by an array of hemispherical metal structures that act as a mask during an etch to remove substrate material down to the lower surface during formation of the pillars. The pillars are dense and uniform and include a microscale average diameter. The spheres are formed as independent metal spheres or nanoparticles for other applications.
Abstract:
A photovoltaic device includes a crystalline substrate having a first dopant conductivity, an interdigitated back contact and a front surface field structure. The front surface field structure includes a crystalline layer formed on the substrate and a noncrystalline layer formed on the crystalline layer. The crystalline layer and the noncrystalline layer are doped with dopants having a same dopant conductivity as the substrate. Methods are also disclosed.
Abstract:
A method for fabricating a device with integrated photovoltaic cells includes supporting a semiconductor substrate on a first handle substrate and doping the semiconductor substrate to form doped alternating regions with opposite conductivity. A doped layer is formed over a first side the semiconductor substrate. A conductive material is patterned over the doped layer to form conductive islands such that the conductive islands are aligned with the alternating regions to define a plurality of photovoltaic cells connected in series on a monolithic structure.