Abstract:
A device includes a transmitter coupled to a node, where the node is to couple to a wired link. The transmitter has a plurality of modes of operation including a calibration mode in which a range of communication data rates over the wired link is determined in accordance with a voltage margin corresponding to the wired link at a predetermined error rate. The range of communication data rates includes a maximum data rate, which can be a non-integer multiple of an initial data rate.
Abstract:
A method is disclosed. The method includes sampling a data signal having a voltage value at an expected edge time of the data signal. A first alpha value is generated, and a second alpha value generated in dependence upon the voltage value. The data signal is adjusted the first alpha value to derive a first adjusted signal. The data signal is adjusted by the second alpha value to derive a second adjusted signal. The first adjusted signal is sampled to output a first data value while the second adjusted signal is sampled to output a second data value. A selection is made between the first data value and the second data value as a function of a prior received data value to determine a received data value.
Abstract:
Methods and apparatuses featuring an injection-locked oscillator (ILO) are described. In some embodiments, an ILO can have multiple injection points and a free-running frequency that is capable of being adjusted based on a control signal. In some embodiments, each injection point of an ILO can correspond to a phase tuning range. In some embodiments, a circuit can include circuitry to detect a phase boundary between two adjacent phase tuning ranges. In some embodiments, a circuit can use the detected phase boundary to switch between the two adjacent phase tuning ranges.
Abstract:
A memory controller is transitioned to a low-power mode in which an active-mode resource required to transmit memory access commands to a memory device at a first command-signaling frequency is disabled. The memory controller transmits a first memory access command to the memory device using an alternative signaling resource during a transitional interval in which the active-mode resource is re-enabled.
Abstract:
A receiver includes a continuous-time equalizer, a decision-feedback equalizer (DFE), data and error sampling logic, and an adaptation engine. The receiver corrects for inter-symbol interference (ISI) associated with the most recent data symbol (first post cursor ISI) by establishing appropriate equalization settings for the continuous-time equalizer based upon a measure of the first-post-cursor ISI.
Abstract:
Methods and apparatuses featuring an injection-locked oscillator (ILO) are described. In some embodiments, an ILO can have multiple injection points and a free-running frequency that is capable of being adjusted based on a control signal. In some embodiments, each injection point of an ILO can correspond to a phase tuning range. In some embodiments, a circuit can include circuitry to detect a phase boundary between two adjacent phase tuning ranges. In some embodiments, a circuit can use the detected phase boundary to switch between the two adjacent phase tuning ranges.
Abstract:
A device implements data reception with edge-based partial response decision feedback equalization. In an example embodiment, the device implements a tap weight adapter circuit that sets the tap weights that are used for adjustment of a received data signal. The tap weight adapter circuit sets the tap weights based on previously determined data values and input from an edge analysis of the received data signal using a set of edge samplers. The edge analysis may include adjusting the sampled data signal by the tap weights determined by the tap weight adapter circuit. A clock generation circuit generates an edge clock signal to control the edge sampling performed by the set of edge samplers. The edge clock signal may be generated as a function of the signals of the edge samplers and prior data values determined by the equalizer.
Abstract:
A memory device comprising a programmable command-and-address (CA) interface and/or a programmable data interface is described. In an operational mode, two or more CA interfaces may be active. In another operational mode, at least one, but not all, CA interfaces may be active. In an operational mode, all of the data interfaces may be active. In another operational mode, at least one, but not all, data interfaces may be active. The memory device can include circuitry to select: an operational mode; a sub-mode within an operational mode; one or more CA interfaces as the active CA interface(s); a main CA interface from multiple active CA interfaces; and/or one or more data interfaces as the active data interfaces. The circuitry may perform these selection(s) based on one or more bits in one or more registers and/or one or more signals received on one or more pins.
Abstract:
A device includes a transmitter coupled to a node, where the node is to couple to a wired link. The transmitter has a plurality of modes of operation including a calibration mode in which a range of communication data rates over the wired link is determined in accordance with a voltage margin corresponding to the wired link at a predetermined error rate. The range of communication data rates includes a maximum data rate, which can be a non-integer multiple of an initial data rate.
Abstract:
A memory device comprising a programmable command-and-address (CA) interface and/or a programmable data interface is described. In an operational mode, two or more CA interfaces may be active. In another operational mode, at least one, but not all, CA interfaces may be active. In an operational mode, all of the data interfaces may be active. In another operational mode, at least one, but not all, data interfaces may be active. The memory device can include circuitry to select: an operational mode; a sub-mode within an operational mode; one or more CA interfaces as the active CA interface(s); a main CA interface from multiple active CA interfaces; and/or one or more data interfaces as the active data interfaces. The circuitry may perform these selection(s) based on one or more bits in one or more registers and/or one or more signals received on one or more pins.