摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type first semiconductor layer, a p-type second semiconductor layer and a light emitting layer. The light emitting layer is provided between the first and second semiconductor layers, and includes a plurality of barrier layers including a nitride semiconductor and a well layer provided between the barrier layers and including a nitride semiconductor containing In. The barrier layers and the well layer are stacked in a first direction from the second semiconductor layer toward the first semiconductor layer. The well layer has a p-side interface part and an n-side interface part. Each of the p-side and the n-side interface part include an interface with one of the barrier layers. A variation in a concentration of In in a surface perpendicular to the first direction of the p-side interface part is not more than that of the n-side interface part.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, an electrode, a p-type semiconductor layer and a light emitting layer. The p-type semiconductor layer is provided between the n-type semiconductor layer and the electrode and includes a p-side contact layer contacting the electrode. The light emitting layer is provided between the n-type and the p-type semiconductor layers. The p-side contact layer includes a flat part having a plane perpendicular to a first direction from the n-type semiconductor layer toward the p-type semiconductor layer and multiple protruding parts protruding from the flat part toward the electrode. A height of the multiple protruding parts along the first direction is smaller than one-fourth of a dominant wavelength of light emitted from the light emitting layer. A density of the multiple protruding parts in the plane is 5×107/cm2 or more and 2×108/cm2 or less.
摘要翻译:根据一个实施例,半导体发光器件包括n型半导体层,电极,p型半导体层和发光层。 p型半导体层设置在n型半导体层和电极之间,并且包括与电极接触的p侧接触层。 发光层设置在n型和p型半导体层之间。 p侧接触层包括具有垂直于从n型半导体层朝向p型半导体层的第一方向的平面的平坦部分和从平坦部分向电极突出的多个突出部分。 沿着第一方向的多个突出部分的高度小于从发光层发射的光的主波长的四分之一。 平面内的多个突出部的密度为5×10 7 / cm 2以上2×10 8 / cm 2以下。
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type layer, a p-type layer, and a light emitting unit provided between the n-type layer and the p-type layer and including barrier layers and well layers. At least one of the barrier layers includes first and second portion layers. The first portion layer is disposed on a side of the n-type layer. The second portion layer is disposed on a side of the p-type layer, and contains n-type impurity with a concentration higher than that in the first portion layer. At least one of the well layers includes third and fourth portion layers. The third portion layer is disposed on a side of the n-type layer. The fourth portion layer is disposed on a side of the p-type layer, and contains n-type impurity with a concentration higher than that in the third portion layer.
摘要:
In one embodiment, a method is disclosed for manufacturing a semiconductor light emitting device. The device includes a crystal layer including a nitride semiconductor. The crystal layer contains In and Ga atoms. The method can include forming the crystal layer by supplying a source gas including a first molecule including Ga atoms and a second molecule including In atoms onto a base body. The crystal layer has a ratio xs of a number of the In atoms to a total of the In atoms and the Ga atoms being not less than 0.2 and not more than 0.4. A vapor phase supply ratio xv of In is a ratio of a second partial pressure to a total of first and second partial pressures. The first and second partial pressures are pressure of the first and second molecules and degradation species of the first and second molecules on the source gas, respectively. (1−1/xv)/(1−1/xs) is less than 0.1.
摘要:
A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.
摘要:
A semiconductor substrate encompasses a GaN substrate and a single-crystal layer formed of III-V nitride compound semiconductor epitaxially grown on the GaN substrate. The GaN substrate has a surface orientation defined by an absolute value of an off-angle of the surface from {0001} plane towards direction lying in a range of 0.12 degree to 0.35 degree and by an absolute value of an off-angle of the surface from {0001} plane towards direction lying in a range of 0.00 degree to 0.06 degree.
摘要:
A semiconductor substrate encompasses a GaN substrate and a single-crystal layer formed of III-V nitride compound semiconductor epitaxially grown on the GaN substrate. The GaN substrate has a surface orientation defined by an absolute value of an off-angle of the surface from {0001} plane towards direction lying in a range of 0.12 degree to 0.35 degree and by an absolute value of an off-angle of the surface from {0001} plane towards direction lying in a range of 0.00 degree to 0.06 degree.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type layer, a light emitting layer, a p-type layer, and a transparent electrode. The n-type layer includes a nitride semiconductor and has a thickness not more than 500 nm. The light emitting layer is provided on the n-type layer. The p-type layer is provided on the light emitting layer and includes a nitride semiconductor. The transparent electrode contacts the n-type layer. The n-type layer is disposed between the transparent electrode and the light emitting layer.
摘要:
A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer, a light emitting part, and a multilayered structural body. The light emitting part is provided between the first and second semiconductor layers and includes barrier layers and well layers alternately stacked. The multilayered structural body is provided between the first semiconductor layer and the light emitting part and includes high energy layers and low energy layers alternately stacked. An average In composition ratio on a side of the second semiconductor is higher than that on a side of the first semiconductor in the multilayered structural body. An average In composition ratio on a side of the second semiconductor is higher than that on a side of the first semiconductor in the light emitting part.