摘要:
A split-resonator integrated-post vibratory microgyroscope may be fabricated using micro electrical mechanical systems (MEMS) fabrication techniques. The microgyroscope may include two gyroscope sections bonded together, each gyroscope section including resonator petals, electrodes, and an integrated half post. The half posts are aligned and bonded to act as a single post.
摘要:
A method for processing a low ohmic contact structure to a buried conductive layer in or below a device layer forming part of a semiconductor component is presented, whereby first a highly doped region within said device layer reaching said buried conductive layer is realised, this being followed by a step of etching a trench through said highly doped region to a final depth which extends at least to the semiconductor substrate underneath said buried conductive layer. In a variant method this trench is first pre-etched until a predetermined depth, before the highly doped region is provided. A semiconductor structure which is realised by these methods is described as well.
摘要:
A method of forming a salicide. A metal layer is formed on a silicon-based substrate comprising a gate with a spacer on the side wall of the gate and a source/drain is provided. Next, a first thermal treatment is performed to make the portions of the metal layer react with the silicon in the gate and the source/drain to form a salicide. Then, any unreacted metal and the spacer are removed. An ion containing silicon is introduced into the source/drain. Finally, a second thermal treatment is performed.
摘要:
This invention relates to a method for forming a dielectric layer, more particularly, to a method for forming a silicate dielectric layer. The first step of the present invention is to form a silicate layer on the substrate of the wafer by using a physical vapor deposition (PVD) procedure. The silicate layer is a hafnium silicate (HfSi) layer or a zirconium silicate (ZrSi) layer. Then the silicate layer is treated to become a gate dielectric layer or an inter-layer dielectric layer which has higher a dielectric constant by using a rapid thermal annealing (RTA) procedure in a environment which is filled of nitrogen or ammonia.
摘要:
A pre-cleaning method of a substrate for a semiconductor device includes preparing a chamber, the chamber including a plasma electrode at an outside of the chamber, a power supplying system connected to the plasma electrode, a susceptor in the chamber, and an injector injecting gases into the chamber, equipping a metallic net in the chamber, the metallic net over the susceptor and grounded, disposing a substrate on the susceptor, and injecting a hydrogen gas into the chamber through the injector and supplying radio frequency power to the plasma electrode, thereby removing an oxide layer on the substrate.
摘要:
In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
摘要翻译:在本发明中,提供了在n型ZnO和Mg x Zn 1-x O外延膜上制造的肖特基UV光电探测器等半导体器件。 ZnO和MgxZn1-xO膜在R平面蓝宝石衬底上生长,肖特基二极管分别用银和铝作为肖特基和欧姆接触金属制作在ZnO和Mg x Zn 1-x O膜上。 肖特基二极管具有圆形图案,其中内圆是肖特基接触,外环是欧姆接触。 Ag肖特基接触图案使用标准剥离技术制造,而Al欧姆接触图案是使用湿化学蚀刻法形成的。 与其感光对手相比,这些检测器显示低频光响应,高速光响应,较低的漏电流和低噪声性能。 本发明还可应用于光学调制器,金属半导体场效应晶体管(MESFET)等。
摘要:
A method of fabricating a ferroelectric capacitor is disclosed. The method comprises the decreases a reduction in a bottom electrode material during formation of the ferroelectric dielectric portion of the capacitor. In the above manner, a fatigue resistance of the ferroelectric capacitor is increased substantially.
摘要:
The present invention provides a bonding pad for an optical semiconductor device, including: a first supplementary adhesive layer made of Si3N4, being formed on a semiconductor substrate; a bonding pad layer made of benzocyclobutene, being formed on the first supplementary adhesive layer; a second supplementary adhesive layer made of Si3N4, being formed on the bonding pad layer; and a metallic electrode layer formed on the second supplementary adhesive layer.
摘要翻译:本发明提供一种用于光学半导体器件的焊盘,包括:形成在半导体衬底上的由Si 3 N 4制成的第一辅助粘合层; 形成在第一辅助粘合剂层上的由苯并环丁烯制成的焊盘层; 在所述接合焊盘层上形成由Si 3 N 4制成的第二辅助粘合层; 以及形成在所述第二辅助粘合剂层上的金属电极层。
摘要:
Power combining amplifiers using two different monocrystalline materials in a monolithic device are provided. High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
摘要:
The method of the invention for producing a Group III nitride compound semiconductor, employing an etchable substrate which is produced from a material other than the Group III nitride compound semiconductor, includes stacking one or more layers of the Group III nitride compound semiconductor on one face of the substrate and etching the other face of the substrate while stacking one or more semiconductor layers or after completion of stacking one or more semiconductor layers, to thereby reduce the thickness of most of the substrate. The apparatus of present invention for producing a semiconductor through vapor phase growth, contains a substrate for vapor-phase-growing the semiconductor; a source-supplying system for supplying a source for vapor phase growth of the semiconductor; and an etchant-supplying system, wherein the source-supplying system and the etchant-supplying system are isolated through placement of the substrate.