摘要:
A semiconductor light-emitting device is provided. In an InGaN-based semiconductor light-emitting device including an Ag electrode, a semiconductor layer on the contact side of at least the Ag electrode is a dislocation semiconductor layer of which dislocation density is selected to be less than 1×107 (1/cm2) and thereby short-circuit caused by Ag migration generated along this dislocation can be avoided. Thus, this semiconductor light-emitting device is able to solve a problem of a shortened life and a problem with the fraction of defective devices encountered with the InGaN-based semiconductor light-emitting device.
摘要翻译:提供了一种半导体发光器件。 在包括Ag电极的InGaN系半导体发光元件中,至少Ag电极的接触侧的半导体层是位错密度选择为小于1×10 7(1 / cm 2)的位错半导体层 ),从而可以避免沿着该位错产生的Ag迁移引起的短路。 因此,该半导体发光器件能够解决寿命缩短的问题,并且能够解决InGaN系半导体发光元件遇到的缺陷器件的分数的问题。
摘要:
A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
摘要:
A semiconductor light-emitting device capable of obtaining a high light reflectance through the use of a high-reflection metal layer formed on the side of an electrode on one side and capable of preventing migration of atoms from the high-reflectance metal layer is provided. Semiconductor layers of the opposite conduction types are formed on the opposite sides of an active layer, and an ohmic contact layer being a thin film for contriving a decrease in contact resistance, a transparent and conductive layer, and a high-reflection metal layer for reflecting light generated in the active layer are sequentially layered on one of the semiconductor layers. Since the transparent conductive layer functions also as a barrier layer and it transmits light, a high light take-out efficiency can be obtained through the reflection at the high-reflectance metal layer.
摘要:
A semiconductor light-emitting device is provided. The semiconductor light-emitting device includes: a substrate having a substrate surface oriented along a substrate surface plane; a first grown layer including a first grown layer conductivity type formed on the substrate; a masking layer formed on the first grown layer; a second grown layer of a second grown layer conductivity type formed by selective growth through an opening in the masking layer and including a crystal surface oriented along a crystal surface plane; a first cladding layer including a first cladding layer conductivity type formed along at least a portion of the crystal surface plane; an active layer; and a second cladding layer including a second cladding layer conductivity type. At least one of the first cladding layer, the active layer, and the second cladding layer cover the masking layer surrounding the opening.
摘要:
There is obtained a semiconductor light-emitting device capable of obtaining a high light reflectance through the use of a high-reflection metal layer formed on the side of an electrode on one side and capable of preventing migration of atoms from the high-reflectance metal layer. Semiconductor layers of the opposite conduction types are formed on the opposite sides of an active layer, and an ohmic contact layer being a thin film for contriving a decrease in contact resistance, a transparent and conductive layer, and a high-reflection metal layer for reflecting light generated in the active layer are sequentially layered on one of the semiconductor layers. Since the transparent conductive layer functions also as a barrier layer and it transmits light, a high light take-out efficiency can be obtained through the reflection at the high-reflectance metal layer.
摘要:
A GaN-based semiconductor light-emitting device includes (A) a first GaN-based compound semiconductor layer 13 having n-type conductivity, (B) an active layer 15 having a multi-quantum well structure including well layers and barrier layers for separating between the well layers, and (C) a second GaN-based compound semiconductor layer 17 having p-type conductivity. The well layers are disposed in the active layer 15 so as to satisfy the relation d1
摘要:
A semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, illuminating device, and manufacturing method thereof are provided. An n-type GaN layer is grown on a sapphire substrate, and a growth mask of SiN, for example, is formed thereon. On the n-type GaN layer exposed through an opening in the growth mask, a six-sided steeple-shaped n-type GaN layer is selectively grown, which has inclined crystal planes each composed of a plurality of crystal planes inclined from the major surface of the sapphire substrate by different angles of inclination to exhibit a convex plane as a whole. On the n-type GaN layer, an active layer and a p-type GaN layer are grown to make a light emitting element structure. Thereafter, a p-side electrode and an n-side electrode are formed.
摘要:
An n-type GaN layer is grown onto a sapphire substrate and a hexagonal etching mask is formed onto the n-type GaN layer as provided. The n-type GaN layer is etched to a predetermined depth by using the etching mask by the RIE method. A hexagonal prism portion whose upper surface is a C plane is formed. After the etching mask was removed, an active layer and a p-type GaN layer are sequentially grown onto the whole surface of the substrate so as to cover the hexagonal prism portion, thereby forming a light emitting device structure. After that, a p-side electrode is formed onto the p-type GaN layer of the hexagonal prism portion and an n-side electrode is formed onto the n-type GaN layer.
摘要:
Nitride semiconductor devices and methods of producing same are provided. The present invention includes forming a nitride semiconductor layer on a base body of the nitride semiconductor under selective and controlled crystal growth conditions. For example, the crystal growth rate, the supply of crystal growth source material and/or the crystal growth area can be varied over time, thus resulting in a nitride semiconductor device with enhanced properties.
摘要:
An n-type GaN layer is grown onto a sapphire substrate and a hexagonal etching mask is formed onto the n-type GaN layer as provided. The n-type GaN layer is etched to a predetermined depth by using the etching mask by the RIE method. A hexagonal prism portion whose upper surface is a C plane is formed. After the etching mask was removed, an active layer and a p-type GaN layer are sequentially grown onto the whole surface of the substrate so as to cover the hexagonal prism portion, thereby forming a light emitting device structure. After that, a p-side electrode is formed onto the p-type GaN layer of the hexagonal prism portion and an n-side electrode is formed onto the n-type GaN layer.