Abstract:
In one embodiment, a passivation level includes a low-k dielectric. To prevent the low-k dielectric from absorbing moisture when exposed to air, exposed portions of the low-k dielectric are covered with spacers. As can be appreciated, this facilitates integration of low-k dielectrics in passivation levels. Low-k dielectrics in passivation levels help lower capacitance on metal lines, thereby reducing RC delay and increasing signal propagation speeds.
Abstract:
In one embodiment, a sacrificial layer is deposited over a base layer. The sacrificial layer is used to define a subsequently formed floating metal structure. The floating metal structure may be anchored into the base layer. Once the floating metal structure is formed, the sacrificial layer surrounding the floating metal structure is etched to create a unity-k dielectric region separating the floating metal structure from the base layer. The unity-k dielectric region also separates the floating metal structure from another floating metal structure. In one embodiment, a noble gas fluoride such as xenon difluoride is used to etch a sacrificial layer of polycrystalline silicon.
Abstract:
A method of making a semiconductor structure, includes annealing a structure in a deuterium-containing atmosphere. The structure includes (i) a substrate, (ii) a gate dielectric on the substrate, (iii) a gate on the gate dielectric, (iv) an etch-stop layer on the gate, and (v) an interlayer dielectric on the etch-stop layer.
Abstract:
Two different regions of a semiconductor substrate are implanted with dopants/ions. The implantation may occur though a sacrificial oxide layer disposed over the substrate. Following implantation in one or both regions, the substrate may be annealed and the sacrificial oxide layer removed. An oxide layer is then grown over the implanted regions of the substrate. For some embodiments, the substrate may be implanted with arsenic and/or with phosphorus. Further, the anneal may be performed for approximately 30 to 120 minutes at a temperature between approximately 900° C. and 950° C.
Abstract:
A method of forming a field oxide or an isolation region in a semiconductor die. An oxidation mask layer (over an oxide layer disposed over the substrate) is patterned and subsequently etched, preferably so that the oxidation mask layer may have a nearly vertical sidewall. The oxide layer and the substrate in the isolation region are etched to form a recess in the substrate having a sloped surface with respect to the sidewall of the oxidation mask layer. A field oxide is then grown in the recess using a dry oxidizing atmosphere. The sloped sidewall of the substrate recess effectively moves the face of the exposed substrate away from the edge of the oxidation mask layer sidewall. Compared to non-sloped techniques, the oxidation appears to start with a built-in offset from the patterned etch. This leads to a reduction of oxide encroachment and less field oxide thinning. The preferred range of slopes for the substrate sidewall is from approximately 10.degree. to 40.degree. with respect to the oxidation mask layer sidewall.
Abstract:
A method is described for cleaning a semiconductor wafer. The method includes immersing a wafer in a liquid comprising water. The wafer has a front face, a back face, and an edge. The method also includes providing a substantially particle free environment adjacent to the front face and the back face as the liquid is being removed. A step of introducing a carrier gas comprising a cleaning enhancement substance also is included. It is believed that the cleaning enhancement substance dopes any liquid adhered to the front and back faces of the wafer to cause a concentration gradient of the cleaning enhancement substance in the liquid and accelerate removal of the adhered liquid off of the water.
Abstract:
Scaling a charge trap memory device and the article made thereby. In one embodiment, the charge trap memory device includes a substrate having a source region, a drain region, and a channel region electrically connecting the source and drain. A tunnel dielectric layer is disposed above the substrate over the channel region, and a multi-layer charge-trapping region disposed on the tunnel dielectric layer. The multi-layer charge-trapping region includes a first deuterated layer disposed on the tunnel dielectric layer, a first nitride layer disposed on the first deuterated layer and a second nitride layer.
Abstract:
An embodiment of a nonvolatile charge trap memory device is described. In one embodiment, the device comprises a channel comprising silicon overlying a surface on a substrate electrically connecting a first diffusion region and a second diffusion region of the memory device, and a gate stack intersecting and overlying at least a portion of the channel, the gate stack comprising a tunnel oxide abutting the channel, a split charge-trapping region abutting the tunnel oxide, and a multi-layer blocking dielectric abutting the split charge-trapping region. The split charge-trapping region includes a first charge-trapping layer comprising a nitride closer to the tunnel oxide, and a second charge-trapping layer comprising a nitride overlying the first charge-trapping layer. The multi-layer blocking dielectric comprises at least a high-K dielectric layer.
Abstract:
A method for fabricating a nonvolatile charge trap memory device is described. The method includes subjecting a substrate to a first oxidation process to form a tunnel oxide layer overlying a polysilicon channel, and forming over the tunnel oxide layer a multi-layer charge storing layer comprising an oxygen-rich, first layer comprising a nitride, and an oxygen-lean, second layer comprising a nitride on the first layer. The substrate is then subjected to a second oxidation process to consume a portion of the second layer and form a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The stoichiometric composition of the first layer results in it being substantially trap free, and the stoichiometric composition of the second layer results in it being trap dense. The second oxidation process can comprise a plasma oxidation process or a radical oxidation process using In-Situ Steam Generation.
Abstract:
Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the method comprises: (i) forming an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate in at least a first region in which a non-volatile memory transistor is to be formed, the ONO dielectric stack including a multi-layer charge storage layer; (ii) forming an oxide layer on the surface of the substrate in a second region in which a metal oxide semiconductor (MOS) logic transistor is to be formed; and (iii) forming a high work function gate electrode on a surface of the ONO dielectric stack. Other embodiments are also disclosed.