Abstract:
A method can be used for testing a charge-retention circuit for measurement of a time interval having a storage capacitor coupled between a first biasing terminal and a floating node, and a discharge element coupled between the floating node and a reference terminal. The discharge element is configured to implement discharge of a charge stored in the storage capacitor by leakage through a corresponding dielectric. The method includes biasing the floating node at a reading voltage, detecting a biasing value of the reading voltage, implementing an operation of integration of the discharge current in the discharge element with the reading voltage kept constant at the biasing value, and determining an effective resistance value of the discharge element as a function of the operation of integration.
Abstract:
A charge pump circuit can be controlled by a control signal that is generated from a first signal coming from and output signal of the charge pump circuit, from a reference signal, and from a clock signal. The generation of the control signal includes a comparison of the reference signal and of the first signal in tempo with a timing signal coming from the clock signal.
Abstract:
An integrated circuit is formed on a semiconductor substrate and includes a trench conductor and a first transistor formed on the surface of the substrate. The transistor includes: a transistor gate structure, a first doped region extending in the substrate between a first edge of the gate structure and an upper edge of the trench conductor, and a first spacer formed on the first edge of the gate structure and above the first doped region. The first spacer completely covers the first doped region and a silicide is present on the trench conductor but is not present on the surface of the first doped region.
Abstract:
The disclosure relates to an integrated circuit comprising a transistor comprising first and second conduction terminals and a control terminal. The integrated circuit further comprises a stack of a first dielectric layer, a conductive layer, and a second dielectric layer, the first conduction terminal comprising a first semiconductor region formed in the first dielectric layer, the control terminal comprising a second semiconductor region formed in the conductive layer, and the second conduction terminal comprising a third semiconductor region formed in the second dielectric layer.
Abstract:
The present disclosure relates to a memory including a memory array with at least two rows of memory cells, a first driver coupled to a control line of the first row of memory cells, and a second driver coupled to a control line of the second row of memory cells. The first driver is made in a first well, the second driver is made in a second well electrically insulated from the first well, and the two rows of memory cells are produced in a memory array well electrically insulated from the first and second wells.
Abstract:
Various embodiments provide a memory cell that includes a vertical selection gate, a floating gate extending above the substrate, wherein the floating gate also extends above a portion of the vertical selection gate, over a non-zero overlap distance, the memory cell comprising a doped region implanted at the intersection of a vertical channel region extending opposite the selection gate and a horizontal channel region extending opposite the floating gate.
Abstract:
A memory cell formed in a semiconductor substrate, includes a selection gate extending vertically in a trench made in the substrate, and isolated from the substrate by a first layer of gate oxide, a horizontal floating gate extending above the substrate and isolated from the substrate by a second layer of gate oxide, and a horizontal control gate extending above the floating gate. The selection gate covers a lateral face of the floating gate. The floating gate is separated from the selection gate only by the first layer of gate oxide, and separated from a vertical channel region, extending in the substrate along the selection gate, only by the second layer of gate oxide.
Abstract:
A non-volatile memory includes bit lines, a first page-erasable sector including memory cells of a first type, and a second word-erasable or bit-erasable sector including memory cells of a second type. The memory cells of the first type comprise a single floating-gate transistor and the memory cells of the second type comprise a first floating-gate transistor and a second floating-gate transistor the floating gates of which are electrically coupled, the second floating-gate transistor of a memory cell of the second type enabling the memory cell to be individually erased.
Abstract:
The present disclosure relates to a memory cell comprising a vertical selection gate extending in a trench made in a substrate, a floating gate extending above the substrate, and a horizontal control gate extending above the floating gate, wherein the floating gate also extends above a portion of the vertical selection gate over a non-zero overlap distance. Application mainly to the production of a split gate memory cell programmable by hot-electron injection.
Abstract:
A method controls a memory that includes twin memory cells formed in a semiconductor substrate. Each memory cell includes a floating-gate transistor including a state control gate, in series with a select transistor that includes a vertical select control gate, common to the twin memory cells, and a source connected to an embedded source line, common to the memory cells. The drains of the floating-gate transistors of the twin memory cells are connected to a same bit line. The method includes controlling a memory cell so as to turn it on to couple the source line to a bit line coupled to the ground, during a step of programming or reading another memory cell.